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ABSTRACT 

Model based systems engineering (MBSE) is explored as an alternative to the 

Department of Defense (DoD)’s heavily document-driven processes for architecture 

development and acquisition management.  MBSE can be employed to meet the 

standards set in the DoD acquisition framework.  Data exchange specifications, such as 

the application protocol 233 (AP233), can be implemented to enable synergistic benefits 

to data analysis across the enterprise.  Architecture development techniques, including 

the structured analysis and design technique and the systems modeling language 

(SysML), are introduced to aid in the development and assessment of space system 

mission area architectures, enabling rigorous mathematical analysis to support key 

programmatic decisions.  A detailed example of the application of SysML, in conjunction 

with MBSE principles, is provided for the Overhead Persistent Infrared mission area, 

specifically the Space Based Infrared Surveillance System.  A three-phase adoption 

approach is recommended:  first identify, list, and manage the configuration of all critical 

program models, processes, and tools used throughout the DoD.  Second, mandate a data 

exchange specification, such as the International Organization for Standardization (10303 

AP233 standard, across the DoD space acquisition community.  Finally, further 

standardize the implementation of MBSE practices through implementation of SysML.  

Heuristics for developing system architecture are provided.  
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EXECUTIVE SUMMARY 

The objective of this thesis is to explore the potential benefits of using a model based 

systems engineering (MBSE) approach, facilitated by a structured architecture modeling 

language such as the Systems Modeling Language (SysML), to develop and employ 

mission area architectures for Department of Defense (DoD) space systems.  Recently, 

the need to capture and develop comprehensive architectures for space mission areas 

within the DoD has drastically increased.  It is proposed that in order to respond to this 

challenge, it is recommended that the DoD depart from its exclusive use of document-

driven processes for architecture and acquisition management and adopt a rigorous 

technique such as MBSE.   

MBSE is a formalized approach to modeling and architecting a system across the 

full system lifecycle.  MBSE can be employed to the standards set by the DoD 

Architecture Framework (DoDAF), which provides the baseline structure and common 

data meta-model specifications to develop mission area architectures for the DoD, 

including space systems.  Data exchange specifications, such as the ISO 10303 

Application Protocol—233 (AP233) standard, can be implemented across a DoD 

organization to standardize the exchange of architecture and system data between 

otherwise stove-piped organizational components, enabling synergistic benefits to data 

analysis across the enterprise.  This thesis explores structured techniques, applications, 

and languages that can be used to enable and aid in the development and assessment of 

detailed space system architecture, capturing the detailed interactions and 

interdependencies within and throughout a system and enabling rigorous mathematical 

analysis to support key programmatic decisions and needs, including the Structured 

Analysis and Design Technique and the SysML.    

In order to realize the maximum benefits of MBSE including, enhanced 

communications, reduced development risk, improved quality, increased productivity, 

and enhanced knowledge transfer, a structured architecture development technique such 

as the Structured Analysis and Design Technique (SADT) or SysML must be 

implemented across the DoD space community and used to develop space based mission 



 xx 

area architectures.  A detailed example of the application of SysML, in conjunction with 

MBSE principles, is provided for the Overhead Persistent Infrared (OPIR) mission area, 

and specifically modeled for the Space Based Infrared Surveillance System (SBIRS).  

This SysML model, once complete and specified with mathematical relationships, can be 

used to support rigorous engineering analysis.  Powerful cost-effectiveness comparisons 

can then be generated as part of an analysis of alternatives or trade study to inform 

decision makers by answering the question:  How well does any particular architecture 

satisfy the mission requirements?   Ultimately, the overall quality of a system acquisition 

effort, or project, can be greatly improved through the application of MBSE architecture, 

modeling and simulation, and trade study activities—all enabled by the development of 

architecture using SysML.   

Adopting MBSE and SysML for the design of DoD space systems will require a 

fundamental paradigm shift in how the DoD does business, transitioning from what is 

now a purely document-driven approach.  Many potential barriers and limitations exist 

that may limit or impede the introduction of MBSE practices and the application of 

SysML.  Therefore, a three phase approach is recommended in this thesis.  The first 

incremental phase is to identify, list, and manage the configuration of all critical program 

models, processes, and tools used throughout the Space and Missile Systems Center 

(SMC).  The second recommended phase is to mandate a data exchange specification, 

such as the AP233 standard, across the DoD space acquisition community to realize some 

enterprise benefits and aid in the development of requirements for a more integrated and 

structured approach such as SysML.  Simply implementing a data exchange specification 

would not fundamentally improve how information is managed at the component level, 

however.  Therefore, the third recommended phase is to further standardize the 

implementation of MBSE practices by enforcing common processes, standards, models, 

tools, and techniques across the community.  As discussed within this paper, the SysML 

modeling language is uniquely suited to meet this demand.   It is clear that such a 

paradigm shift is required if the DoD and SMC are to meet their requirements for greater 

interoperability and ultimately deliver more successful systems through more effective 

architecture development and acquisition efforts.   



 xxi 

ACKNOWLEDGMENTS 

I would like to thank my advisors, Mark Rhoades, Kristin Giammarco, and Mary Vizzini 

for all of their valuable feedback and support of my research and writing. 

Of course, none of this would have been possible if not for the incredible support 

of my loving wife, Laura, and the patience and never-ending inspiration provided by my 

daughter, Chloe, and son, Rowan.  And to my loving parents, Bruce and Rebecca, for 

instilling in me the motivation to excel and never give up.  For it is my family that 

provides the stimulus that motivates everything I do.   



 xxii 

THIS PAGE INTENTIONALLY LEFT BLANK 

 



 1 

I. INTRODUCTION 

A. PROBLEM STATEMENT AND OBJECTIVE 

The Space and Missile Systems Center (SMC), Los Angeles Air Force Base 

(LAAFB), California, is the Department of Defense’s (DoD) product center for the 

Acquisition of all DoD space systems.  SMC is organized into program offices 

responsible for the program management and acquisition of specific space systems, 

constellations, or portfolios of space systems, along with staff organizations that provide 

oversight and guidance for all SMC program offices.  Given the wide variety of space 

systems being acquired by SMC and the fact that space systems are among the most 

complex systems in existence, a great number of elaborate systems engineering and 

program management tools and processes must be used by every organizational level of 

SMC and its partners, including the prime and sub-contractors working with the program 

office to design and build the systems. 

Recently, the need to capture and develop comprehensive enterprise architectures 

for space related mission areas within the DoD has drastically increased.  This need is 

driven by several factors, including the ever increasing complexity of space-based 

systems-of-systems (SoS) that demand seamless coordination and operation across many 

organizations and technical interfaces and an austere budget environment demanding that 

space systems realize maximum efficiencies in the areas of cost, schedule, and 

performance.  A common method is needed to aid in developing and capturing enterprise 

mission area architectures for use across the DoD space SoS enterprise and applying 

these common architecture development techniques to all systems designed to operate 

within the DoD space mission areas.   

Typically, a great deal of effort is put forward within each DoD space mission 

area to plan and develop new systems.  The enterprise architectures describing these 

systems are oftentimes overlooked or over-simplified, only to be later developed in detail 

by future system acquisition efforts or out of necessity by the defense contractor(s) who 

is (are) selected to develop and operate the system(s).  For instance, although overhead 
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infrared space systems have been in operations for over 40 years, enterprise architecture 

descriptions and characterizations for the Overhead Persistent Infrared (OPIR) mission 

area are just now being developed and shared across the mission area’s stakeholders.  

Prior to recent efforts to capture enterprise mission area architectures, defense contractors 

selected to develop and operate the legacy OPIR systems would individually develop, 

build, operate, and maintain system level architectures for their system(s).  This system-

specific architecture process has been all too common across the DoD space system 

enterprise for all mission areas, not just OPIR.  As a result, the individual system 

architectures within a particular space related mission area are tied to specific systems 

within the mission area, while an enterprise architecture capturing the aggregate of all 

such systems and their related interfaces and inter-dependencies does not exist.  

Furthermore, these individual system architectures are oftentimes developed and 

maintained using different (sometimes unique or highly customized) applications, 

processes, methods, and techniques.   

As a result of this disconnect between system level and enterprise space mission 

area architectures, it is difficult for a program office to capture the true enterprise mission 

area architecture containing all related systems, therefore making the program office’s 

job—that of planning and developing new future systems to fit within an existing 

enterprise mission area architecture—quite challenging.  In the case of the OPIR mission 

area, legacy systems such as the Defense Space Program (DSP) and other Intelligence 

Community sensors each have unique system level architectures which were developed 

by different contractors, executed using unique processes, methods, and techniques, and 

built with unique hardware and software sub-systems.  While these individual system 

level architectures are well understood by the contractors who built the systems, the 

overall enterprise architecture containing these systems among others within the OPIR 

mission area is not well understood.  Consequently, when the space acquisition 

community is studying and investigating follow-on systems to replace these legacy 

platforms, such as the Space Based Infrared Surveillance (SBIRS) system, this lack of 

detailed enterprise system of systems architecture characterization and understanding 

limits the government’s ability to make fully educated and informed decisions about what 
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capabilities and functions need to be performed by the new system of systems (SoS), how 

legacy systems might be impacted by new systems, where commonality might exist 

across the systems within the enterprise, and so on.  Having a comprehensive 

understanding of architecture considerations such as these is not only critically important 

for conducting trade studies, developing systems, or managing any other systems 

engineering activity, but is essential to understanding the impact on the overall cost, 

schedule, and performance levels of the SoS enterprise (e.g., reducing unnecessary 

redundancy and waste; reducing system level re-work; ensuring the enterprise of systems 

as a whole most effectively and efficiently satisfies requirements).   

Model based systems engineering is a discipline that prescribes configuration 

controlled graphical models and views for use in managing the systems engineering 

activities of a system.  MBSE has been widely studied and applied as a powerful systems 

engineering method, particularly as a tool to capture, develop, communicate, and manage 

system architectures.  A specific MBSE architecture format or modeling language, 

however, has not yet emerged for DoD space applications.  A relatively new systems 

engineering modeling language now exists—the systems modeling language (SysML).  

SysML has grown out of two different but related disciplines—MBSE and Software 

Engineering.  SysML has been adopted by many organizations because it is a highly 

adaptable and executable modeling language, particularly concerning systems with highly 

complex software sub-systems.  While communicating and relating system architectures 

across systems, organizations, and disciplines is one of the most significant challenges 

facing the development of a true enterprise architecture, the fact that SysML has shown 

itself to be flexible, adaptable, and used by many organizations makes it a strong 

candidate as the common standard language for developing MBSE architectures.  As 

SysML shows high potential and promise of becoming a new standard method for 

conducting model based systems engineering, it is logical that it could have great 

potential as a common, standard, language tool for developing true mission area 

architectures for DoD space related mission areas, such as the OPIR mission area.   

The purpose of this research is to assess model based systems engineering 

techniques in conjunction with methods and applications such as the enterprising system 
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modeling language and recommend specific applications to aid in the development of 

space based mission area architectures for the Department of Defense. 

B. RESEARCH QUESTIONS 

1. Primary research question: What methods, techniques, and processes can 
be employed to aid in the development of mission area architectures for 
Department of Defense (DoD) space systems?   

2. Subsidiary research questions: 

a. In what ways or in what instances can model based systems 
engineering (MBSE) be used in the development of space based 
mission area architectures for the DoD?   

b. How can the system modeling language (SysML), based on the 
common Software Engineering Unified Modeling Language 
(UML), be applied to aid in developing mission area architectures 
for DoD space systems? 

C. BENEFITS OF STUDY 

The study being conducted during this thesis will benefit the DoD by prescribing 

a standardized process and framework from which model based systems engineering can 

be executed and enterprise architectures developed for any given mission area.  Through 

demonstration of this technique for the Overhead Persistent Infrared (OPIR) mission area 

architecture, the real-world applicability and feasibility of these concepts will be 

explored.  Organizations that could benefit from the study include the U.S. Government 

(USG) and any organization contracting with the USG, particularly the DoD, each 

military service, and the larger space acquisition community. 
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II. DOD ACQUISITION AND SYSTEMS ENGINEERING 
PROCESSES 

The DoD outlines the overarching acquisition policy, procedures, and guidance to 

be adhered to by all military services, including the U.S. Air Force, in DoD Instruction 

5000.02 Operation of the Defense Acquisition System (Defense Acquisition University 

2013h).  The System Acquisition Framework prescribed by this DoD instruction is shown 

in Figure 1. 

 
Figure 1.  Department of Defense System Acquisition Framework (From Department of 

Defense 2008) 

As shown in Figure 1, the System Acquisition Framework outlines specific phases 

of a major DoD acquisition program into the categories of pre-systems acquisition, 

systems acquisition, and sustainment.  Milestones (as indicated by letters in triangles in 

Figure 1) separate the phases of the acquisition process, each requiring specific entrance 

and exit criteria for passage into the next phase.  DoD Instruction 5000.02 details a 

wealth of specific documentation that must accompany each of the milestones, reviews, 

and phases outlined in the system acquisition framework shown in Figure 1.  Examples of 

such documentation include, but are not limited to, the initial capabilities document 

(ICD), capabilities development document (CDD), capabilities production document 

(CPD), systems engineering plan (SEP), test and evaluation master plan (TEMP), 
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concept of operations (CONOPS), system design specification (SDS), and an analysis of 

alternatives (AoA). (Defense Acquisition University 2013a)  This overarching 

acquisition process for the DoD, as it exists today, is a very document-focused and 

document-driven process in which phased documentation artifacts, including those 

summarized above, are generated at a specific instance in time and, in general, are used 

as static tools to manage the acquisition of a system.  

DoD Instruction 5000.02 further defines the core disciplines necessary to 

implement the System Acquisition Framework (Department of Defense [DoD] 2008).  

Once such discipline is systems engineering, which is defined within DoD Instruction 

5000.02 as “the integrating technical processes to define and balance system 

performance, cost, schedule, and risk within a family-of-systems and systems-of-systems 

context” (Defense Acquisition University 2013g, Enclosure 12). It further defines 

systems engineering in reference to the System Acquisition Framework by prescribing 

that “Systems engineering shall be embedded in program planning and be designed to 

support the entire acquisition life cycle” (Defense Acquisition University 2013g, 

Enclosure 12).  While DoD Instruction 5000.02 provides one definition of systems 

engineering, many other definitions of systems engineering exist.  The International 

Council on Systems Engineering (INCOSE) defines systems engineering as: 

an interdisciplinary approach and means to enable the realization of 
successful systems. It focuses on defining customer needs and required 
functionality early in the development cycle, documenting 
requirements, then proceeding with design synthesis and system 
validation while considering the complete problem. (INCOSE 2004)  

In order to conduct the discipline of systems engineering, structured systems 

engineering processes must be adhered to.   

One such systems engineering process has been established by the Defense 

Acquisition Guidebook, which corresponds to DoD Instruction 5000.02.  The structure of 

this systems engineering process is maintained within the Defense Acquisition 

Guidebook, which defines the systems engineering process as “a collection of technical 

management processes and technical processes applied through the acquisition lifecycle” 

(Defense Acquisition University 2013e).  DoD Instruction 5000.02 then goes on to 
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outline the distinct technical management processes and technical processes summarized 

in Table 1 (Defense Acquisition University 2013i).  

Technical Management Processes Technical Processes 
Technical Planning Stakeholder Requirements Definition 
Decision Analysis Requirements Analysis 

Technical Assessment Architecture Design 
Requirements Management Implementation 

Risk Management Integration 
Configuration Management Verification 
Technical Data Management Validation 

Interface Management Transition 

Table 1.   Department of Defense—Systems Engineering Processes (From Defense 
Acquisition University 2013i, Chapter 4) 

The SE processes listed in Table 1 are conducted by the program manager and the 

systems engineer in an iterative, recursive, and parallel fashion throughout the acquisition 

life cycle.  The relative degree of emphasis the program manager and systems engineer 

should expect to apply to each of the management and technical systems engineering 

processes listed in Table 1 during each phase of the System Acquisition Framework 

shown in Figure 1 is represented in Figure 2 (Defense Acquisition University 2013e). 
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Figure 2.  Notional Emphasis of Systems Engineering Processes Throughout the 

Defense Acquisition System Life Cycle (From Defense Acquisition 
University 2013e, Chapter 4) 

These systems engineering technical management processes are implemented 

across each phase of the system acquisition framework following the “V” model 

structure, as shown in Figures 3 and 4.  
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Figure 3.  Department of Defense—Systems Engineering Technical Management 

Processes (From Defense Acquisition University 2013f)  

 
Figure 4.  Department of Defense—Defense Acquisition Management System Technical 

“V” Activities (From Defense Acquisition University 2013f, Defense 
Acquisition Management System) 

Each instantiation of this “V” model includes specific inputs, outputs, 

documentation requirements and activities for each technical management and technical 

process.  An example of the systems engineering “V” model applied to the material 

solution analysis phase is shown in Figure 5.  The required input and output 

documentation resulting from the technical systems engineering processes executed 
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during the material solution analysis phase of the system acquisition framework are 

highlighted by blue boxes.  

 
Figure 5.  “V” Model Highlighting Phasing and Relationships Between Systems 

Engineering Activities Conducted Throughout the Materiel Solution Analysis 
Phase of the Defense Acquisition Framework (From Defense Acquisition 

University 2013j)  

Of particular note from this systems engineering process prescribed by DoD Instruction 

5000.02 are the requirements for documentation release at specific points in the 

acquisition process.  Many of these documents, such as the initial capabilities document 

(ICD), systems engineering plan (SEP), and the capabilities development document 

(CDD) are further restricted by templates or format requirements.  While the tasks, 

activities, and concepts of the systems engineering process described by DoD Instruction 

5000.02 are flexible guidelines to meet the objectives of systems engineering, the 

artifacts of the process in the form of static documentation are restricted by time of 

release, format, and content, all of which severely limit the overall flexibility of the 
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process itself.  Model based systems engineering, at its core, aims to shift from a 

document-focused systems engineering process to a repeatable and executable process 

that allows implementation of the tasks, activities, and concepts of the systems 

engineering process introduced above and defined within DoD Instruction 5000.02 while 

improving implementation and design flexibility through the application of dynamic 

products and models tailored specifically to the unique systems engineering application.   
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III. MODEL BASED SYSTEMS ENGINEERING AND THE 
SYSTEMS MODELING LANGUAGE FOR SYSTEMS 

ENGINEERING AND ARCHITECTURE DEVELOPMENT 

Breaking from the document-based systems engineering approach, model based 

systems engineering (MBSE) provides the systems engineer, architect, and designer with 

rigorous capabilities for conducting requirements analysis, system and sub-system design 

and analysis, modeling and simulation, and system verification and validation 

information.  As is stated in A Primer for Model Based Systems Engineering, “in 

traditional systems engineering approaches, requirements reviews most often occur 

without adequate allocation to the physical or logical representations.  Because the 

model-based approach addresses the allocation systematically, it leads to a better-

grounded method for validating the system design” (Long and Scott 2011d, 98). 

Table 2 summarizes some of the different level of features available from model-

driven versus document-centered system design processes, from which we can see further 

benefits of a model-driven process such as MBSE over rigid document-based process 

such as those over-prescribed by the DoD System Acquisition Framework and DoD 

Instruction 5000.02. 
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Table 2.   Comparison of Model Driven and Document Driven Approaches to System 
Design (From Baker, Clemente, Cohen, Permenter, Purves, and Salmon 2013)  

The document-centered approach to designing and developing large complex 

systems brings about significant challenges in configuration management, flexibility, 

documentation synchronization, and enterprise collaboration.  For such reasons, in 

INCOSE Systems Engineering Vision 2020, it is predicted that all systems engineering 

will evolve, as other engineering disciplines including mechanical, electrical, and 

software already have, from a document-centered to a model-driven process:  

In particular, Model Based Systems Engineering (MBSE) is expected 
to replace the document-centric approach that has been practiced by 
systems engineering in the past and to influence the future practice of 
systems engineering by being fully integrated into the definition of 
systems engineering processes. (INCOSE 2007) 
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A. SYSTEM MODELS 

According to Long as Scott, “Models are common to human experience as aids 

for understanding the way the world works.” (Long and Scott 2011e) In a general sense, 

we all use models in our daily lives to represent oftentimes more complex systems or 

concepts.  Specific to systems engineering: 

models connect the idea behind a design solution with its 
implementation as a real system.  These models attempt to represent 
the entities of the engineering problem (opportunities) and their 
relationships to each other and connect them to the proposed solution 
or existing mechanism that addresses the problem.  The model used in 
this way is the centerpiece of MBSE. (Long and Scott 2011e) 

The concept of a model can be further defined by decomposition into fundamental 

elements (language, structure, argumentation, and presentation) and characteristics 

(order, power to demonstrate and persuade, integrity and consistency, and insight).  Each 

of these four model elements and four model characteristics, as defined by David Long 

and Zane Scott in A Primer for Model-Based Systems Engineering is further defined 

below: (Long and Scott 2011c, 32–33)  

Four Elements of a Model: 
Language—The basis for the modeling approach itself.  The system 
definition language must be clear and unambiguous in order to depict 
the model accurately and understandably.   

Structure—Allows the model to capture system behavior by clearly 
describing the relationships of the system’s entities to each other.  

Argumentation—The purpose of the model is to represent the system 
in such a way that the design team can demonstrate that the system 
accomplishes the purposes for which it is designed.  Therefore the 
model must be capable of making the critical “argument” that the 
system fulfills the stakeholders’ requirements.  

Presentation—Not only must the system be capable of making that 
argument, but it must include some mechanism of showing or 
“presenting” the argument in a way that can be seen and understood. 
(Long and Scott, 2011c) 

Long and Scott also elaborate on the four characteristics of a system 
model:  
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Four Characteristics of a System Model: 
Order—Allows the design team to attach the problem in a coherent 
and consistent manner leading to a viable solution.  The model 
provides the order that becomes the framework for this effort. 

Power to Demonstrate and Persuade—By representing the relevant 
behaviors in proper relationship to the system entities, the model 
allows the designer to see and demonstrate the necessary system 
behavior.  This becomes persuasive in making the case that a given 
solution answers the needs that drive the design of the system. 

Integrity and Consistency—Ambiguity and inconsistency in the 
system design lead to design flaws which, in turn, harm the credibility 
of the argument that the system design meets the needs it was designed 
to meet.  The model must, therefore, provide the integrity and 
consistency that lead to a sound solution. 

Insight—The model provides insight into the system problem facing 
the design team as well as the potential design solutions.  By the 
model’s representation of the system behaviors and relationships, the 
design team is able to gain insight into the comparative advantages of 
different approaches to solving the design problem at hand.  (Long and 
Scott 2011b, 32–33)  

As Long and Scott highlight through their definitions of model elements and 

characteristics, models are customizable and adaptable tools which can be used by a 

systems engineer to design and gain unique insight into a system.  There are many 

different modeling techniques and languages in use today that were developed to fit these 

definitions. For instance, examples of modeling languages for systems engineering 

applications include the system definition language (SDL), which is used for the 

structured analysis approach (realized by a modeling tool such as Vitech CORE) and the 

systems modeling language (SysML), which is elaborated on later as a focus of this 

report.   

B. MODEL BASED SYSTEMS ENGINEERING  

Model based systems engineering describes a set of interrelated models and views 

used to characterize and analyze a system design throughout its lifecycle.  In Systems 

Engineering Vision 2020, the International Council on Systems Engineering (INCOSE) 

defines model based systems engineering as the “formalized application of modeling to  
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support system requirements, design, analysis, verification and validation, beginning in 

the conceptual design phase and continuing throughout development and later life cycle 

phases” (INCOSE 2007, 15). 

The principles of model based systems engineering provide the framework for 

organizations to select a set of interrelated models to help characterize and analyze a 

system and document the design, acquisition and sustainment process.  Using MBSE, 

organizations can select a set of models and views catered to meet their specific needs 

and, through this application, realize significant improvements to their processes and 

ultimately the products they produce.  The selection and use of common models 

throughout and across organizations will help to improve communications between 

stakeholders, managers, and developers by providing a common ground for discussion.  

By standardizing these models, managers and developers can not only communicate more 

effectively within their program but also between multiple programs across their 

organization.  This open communication between programs can help to facilitate the open 

exchange of ideas and lessons learned from one program to another, combating the 

“stove-piped” structure often seen between programs within a large organization or 

product center.   

In their book, A Practical Guide to SysML—The Systems Modeling Language 

(2012a), Friedenthal, Moore, and Steiner advocate the benefits of MBSE by highlighting 

that it:  

…provides an opportunity to address many of the limitations of the 
document-based approach by providing a more rigorous means for 
capturing and integrating system requirements, design, analysis, and 
verification information, and facilitating the maintenance, assessment, 
and communication of this information across the system’s life cycle. 
(20)   

Friedenthal, Moore, and Steiner (2012a) further list the potential benefits of 

MBSE, which include:   

Enhanced communications  
• Shared understanding of the system across the development team 

and other stakeholders 
• Ability to integrate views of the system from multiple perspectives 
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Reduced development risk 
• Ongoing requirements validation and design verification 
• More accurate cost estimates to develop the system 

Improved quality 
• More complete, unambiguous, and verifiable requirements 
• More rigorous traceability between requirements, design, analysis, 

and testing 
• Enhanced design integrity 

Increased productivity 
• Faster impact analysis of requirements and design changes 
• More effective exploration of trade-space 
• Reuse of existing models to support design evolution 
• Reduced errors and time during integration and testing 
• Automated document generation 

Leveraging the models across life cycle 
• Support operator training on the use of the system 
• Support diagnostics and maintenance of the system 

Enhanced knowledge transfer 
• Capture of existing and legacy designs 
• Efficient access and modification of the information. (Friedenthal, 

Moore and Steiner 2012a, 20)  

In addition to facilitating better communication and understanding throughout an 

organization, MBSE also improves the quality of the information presented by these 

models and facilitates reuse of that information.  Model based systems engineering 

describes the use of a common database to integrate and relate the information presented 

by multiple models and views.  There are significant benefits to employing a common 

integrated database to a modeling approach.  At the 22nd Annual INCOSE International 

Symposium, representatives of the Boeing Company summarized these “benefits of 

MBSE in an integrated environment” (Gau Pagnanelli, Sheeley and Carson 2012), listed 

below: 

• Single data environment ensures completeness & consistency of 
design data 

• Rich database permits multi-user input and immediate 
synchronization, improving efficiency and productivity 

• Use of a single data environment results in data availability 
throughout program life-cycles 

• Traceability through model elements enables efficient 
change/impact analysis enabling a more adaptable system 
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• Robust query engine allows rapid assessment of the integrated 
database, finding anomalies early, preventing rework. (Gau 
Pagnanelli, Sheeley and Carson 2012) 

By using an integrated database environment to capture the model data, valuable 

real-time relationships between the information, models, and the decisions they support 

can be realized, significantly improving the value of each model and the maintenance of 

the supporting data.  For instance, requirements can be presented in a hierarchy showing 

the parent-child relationships among and between them, and source and issue linkages 

can be maintained as the requirements evolve.  Using the common database concept, this 

requirements model can then be integrated with other models, such as the design 

architecture for a system and the risk analysis tracking tools for the associated program.  

The allocation of these requirements to specific architecture components and/or functions 

can then be shown along with the traceability of these requirements to the mission level 

requirements (Baker and Christian 2013).  More and more complex relationships can be 

defined between the many models used to characterize a system and relate design issues 

to management initiatives associated with risk, configuration control and interface 

management.  The common database helps with the maintenance of these interrelated 

models and views by allowing managers and engineers to make a single change to the 

database and observe the change uniformly across all applicable models and views. 

C. SYSTEM ARCHITECTURE DESIGN AND DEVELOPMENT 

A critical part of the systems engineering process, system architecture design is 

the primary tool used by systems engineers and system architects for much of the up-

front system design and definition work throughout the pre-systems acquisition phase of 

the system acquisition framework.  As is the case with the systems engineering 

discipline, there are many diverse definitions of system architecture.  In the INCOSE 

Systems Engineering Handbook v. 3.2.2, system architecture is defined as “the 

arrangement of elements and subsystems and their functional allocation to meet system 

requirements” (INCOSE 2011, 96).  The INCOSE Systems Engineering Handbook (SEH) 

further expands this definition by stating that “system… architectures depict the 

summation of a system’s entities and capabilities at levels of abstraction that support all 
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stages of deployment, operations, and support” (INCOSE 2011, 98). The DoD 

Architecture Framework (DoDAF) defines system architecture as “the structure of 

components, their relationships, and the principles and guidelines governing their design 

and evolution over time” (DoD 2009, 249).  In other words, system architecture is all-

encompassing of a system’s design and description and is an evolutionary process—two 

tenets that correlate strongly to the principles of MBSE which outlines evolving products 

used to design and capture the entirety of a system design.   

As previously discussed, system architecture design and development is an 

iterative and recursive process.  DoD Instruction 5000.02 identifies the key activities of 

the architecture design process as: 

• Analysis and synthesis of the physical architecture and the appropriate 
allocation 

• Analysis of the constraint requirements 

• Identify and define physical interfaces and system elements  

• Identify and define critical attributes of the physical system elements, 
including design budgets (e.g., weight, reliability) and open system 
principles. (Defense Acquisition Guidebook 2013b, 4.3.12) 

D. WHY FOCUS ON SYSTEM ARCHITECTURE AND TRADE STUDIES? 

Joseph Elm and Dennis Goldenson of Carnegie Mellon conducted a study 

assessing the business case for systems engineering. (Elm and Goldenson 2012)  Figures 

6–8 summarize the results of their study in representing the correlation between the 

quality of the systems engineering processes and techniques that were applied during 

development and their impact to the overall project performance. The study defines the 

term systems engineering capability (SEC) to measure the rigor of SE activities applied 

to a project.  In addition to assessing the total SE activities (SEC-Total) applied to a 

project, the study decomposed SEC-Total into 11 measures of SE capability, including 

product architecture (SEC-ARCH) and trade studies (SEC-TRD) (Elm and Goldenson 

2012, 12) 

In their study, Elm and Goldenson apply the mathematical principle of Goodman 

and Kruskal’s Gamma, a measure of the relative correlation or strength between two 
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variables.  Gamma values can range from “-1” which indicates a very strong opposing 

relationship to “+1” which indicates a very strong supporting relationship.  A Gamma 

value of zero indicates that there is no relationship between the two variables in question.  

As can be seen in Figure 6, Elm and Goldenson assessed a Gamma value of +0.41 for 

Product Architecture, indicating that there is a significant positive correlation between 

Product Architecture efforts and the overall performance of a project.  Furthermore, the 

figure shows there to be nearly as strong a correlation between the quality of trade studies 

conducted and the project performance, a supporting fact that will later provide additional 

justification to SySML techniques for MBSE and system architecture design and 

development.  

 
Figure 6.  Strength of Correlation Between Various Systems Engineering 

Capabilities/Drivers and Overall Project Performance (From Elm and 
Goldenson 2012, Executive Summary) 

Elm and Goldenson’s study results further elaborate on this correlation between 

systems engineering activities such as architecture and trade studies and overall project 

performance by showing how project performance increases as the systems engineering 

activity level of effort increases from “lower” to “middle” to “higher.”  Figure 7 
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highlights this strong supporting relationship between architecture development and the 

project performance.  As can be observed in Figure 7, the percentage of projects 

delivering higher overall performance (y-axis) increases from 16 percent to 31 percent to 

49 percent as the level of product architecture efforts, or SEC-ARCH (x-axis), increases 

from low to middle to high, respectively.   

 
Figure 7.  Mosaic Chart Comparing Various Level of SEC-ARCH to Overall Project 

Performance (From Elm and Goldenson 2012, 35) 

Figure 8 shows a similarly strong supporting relationship between trade studies 

and project performance, identifying an increase in overall project performance from 13 

percent to 33 percent to 52 percent as the SEC-TRD increases from low to middle to 

high.   
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Figure 8.  Mosaic Chart Comparing Various Level of SEC-TRD to Overall Project 

Performance (From Elm and Goldenson 2012, 38) 

E. MODELING AND SIMULATION 

Model based systems engineering is a powerful tool for system engineers, 

designers and architects because it provides strong structural support to simulation.  Like 

models, simulations are systems engineering tools used by multiple functional disciplines 

throughout all lifecycles of a system.  DoD Instruction 5000.02 defines modeling as “an 

essential [tool] to aid the understanding of complex systems and system 

interdependencies, and to communicate among team members and stakeholders.”  It 

relates simulation to modeling by stating, “simulation provides a means to explore 

concepts, system characteristics, and alternatives; open up the trade space; facilitate 

informed decisions and assess overall system performance” (Defense Acquisition 

University 2013c, 4.3.19.1).  Elaboration on this definition is provided in DoD 

Instruction 5000.02 in the summary of the benefits of modeling and simulation listed 

below: 

Provides insight into program cost, schedule, performance, and 
supportability risk 

Promotes understanding of capabilities and the requirements set 

Provides data to inform program and technical decisions 

Promotes efficient communication and shared understanding among 
stakeholders about relationships between system requirements and the 
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system being developed, through precise engineering artifacts and 
traceability of designs to requirements 

Enables better analysis and understanding of system designs (including 
system elements and enabling system elements), therefore providing a 
greater understanding of the reasons for defects and failures at all 
levels 

Promotes greater efficiencies in design and manufacturing by reducing 
the time and cost of iterative build/test/fix cycles 

Provides timely understanding of program impacts of proposed 
changes. (Defense Acquisition University 2013c, 4.3.19.1)  

The activities and benefits of modeling and simulation to each phase of the 

System Acquisition Framework are summarized in Figures 9 and 10. 

 
Figure 9.  Benefits of Using Modeling and Simulation Throughout the Acquisition Life 

Cycle (From Defense Acquisition University 2013c, 4.3.19.1) 
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Figure 10.  Various Applications of Modeling and Simulation Across the DoD Acquisition Framework (From Defense Acquisition 

University 2013c, 4.3.19.1) 
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As previously discussed, a simulation activity with particularly strong correlation 

to strong project performance is the analysis of alternatives, otherwise known as trade 

studies.  While architecture design and development and trade study activities are both 

critical to the success of a project, they also happen to be highly correlated and 

interdependent activities throughout the pre-system acquisition phase of the acquisition 

lifecycle.  It is the combination of the benefits realized as a result of rigorous architecture 

design and development and trade study activities that drive the MBSE approach, which 

is particularly well suited to strongly support both of these activities.  Furthermore, as it 

will be shown, it is the opinion of the author of this report that the systems modeling 

language (SysML) is a particularly well suited approach to MBSE, which in turn 

optimizes both architecture design and development and trade study activities to realize 

the maximum potential of the MBSE approach to systems engineering.   

F. ANALYSIS OF ALTERNATIVES  

Section 3.3 of the Defense Acquisition Guidebook defines an analysis of 

alternatives (AoA) as “an analytical comparison of the operational effectiveness, 

suitability, and life-cycle cost (or total ownership cost, if applicable) of alternatives that 

satisfy established capability needs” (Defense Acquisition University 2013a, 3.3).  In 

more general systems engineering terms, the AoA activity outlined by DoD Instruction 

5000.02 is a trade study.   

As part of an AoA or trade study, a team of engineers and analysts must conduct a 

comparison of competing system concepts and solutions which satisfy a set of 

requirements, and this must be done by assessing a broad range of system measures.  

These measures are analyzed across the system architecture hierarchy for each system, 

compared against component level or activity level measures of effectiveness (MOEs), 

and ultimately compiled into a top-level effectiveness MOE for each system.  MBSE 

techniques and established system architectures are critical components in support of 

determining this effectiveness MOE for each system, as will be shown in the case study 

within this report.  As highlighted by the DoD 5001, “The modeling effort should be 
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focused on the computation of the specific measures of effectiveness established for the 

purpose of the particular study” (Defense Acquisition University 2013a, 3.3). 

In addition to computing the overall effectiveness of each system concept, an 

AoA or trade study, must estimate the total life cycle cost for each system.  Once the 

overall effectiveness or performance and estimated life cycle cost of each system is 

derived, cost-effectiveness comparisons can be developed and presented as powerful 

tools to decision makers to ultimately select one system concept to implement from 

among all concepts considered within a trade study.  An example of a cost-effectiveness 

comparison is shown in Figure 11.   

 
Figure 11.  Cost-Effectiveness Comparison—Sample Scatter Plot of Effectiveness vs. 

Cost (From Defense Acquisition University 2013a, Chapter 3.3) 

The cost-effectiveness comparison plot in Figure 11 is an example of how the 

overall system effectiveness, plotted on the y-axis, can be compared to the life cycle cost, 
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plotted on the x-axis, for each system alternative considered within a trade study.  As 

shown in Figure 11, “Alt 4” and “Alt 5” are dominated by “Alt 6,” which is expected to 

achieve the same level of effectiveness as the other dominated alternatives but at a lower 

life cycle cost.  Taking into additional consideration any technical or schedule risk and 

other programmatic aspects, a decision maker could use a cost-effectiveness comparison 

plot like this to inform the selection of the system alternative to continue through the 

acquisition life cycle.    

G. MBSE ARCHITECTURE TOOLS AND TECHNIQUES 

There are many tools and techniques that support MBSE and are in use by 

systems engineering and systems architects around the world.  While it is beyond the 

scope of this thesis to analyze and assess each of these tools and techniques, the most 

commonly used MBSE affiliated processes are introduced below. 

1. Department of Defense Architecture Framework (DoDAF) 

A very visible framework is the Department of Defense Architecture Framework, 

i.e., the DoDAF.  As is stated in DoDAF v. 2.0: 

The Department of Defense Architecture Framework (DoDAF), 
Version 2.0 is the overarching, comprehensive framework and 
conceptual model enabling the development of architectures to 
facilitate the ability of Department of Defense (DoD) managers at 
all levels to make key decisions more effectively through 
organized information sharing across the Department, Joint 
Capability Areas (JCAs), Mission, Component, and Program 
boundaries. (Department of Defense, DoDAF v. 2.0 2009, 2)  

DoDAF defines a way of representing an enterprise architecture that enables 

stakeholders to focus on specific interests, while retaining sight of the big picture: 

To assist decision-makers, DoDAF provides the means of 
abstracting essential information from the underlying complexity 
and presenting it in a way that maintains coherence and 
consistency. One of the principal objectives is to present this 
information in a way that is understandable to the many 
stakeholder communities involved in developing, delivering, and 
sustaining capabilities in support of the stakeholder’s mission. 
(Defense Acquisition University 2013d, Chapter 7.2.5) 
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The DoDAF describes specific viewpoints from which each stakeholder can view 

the overarching model.  Each of these viewpoints is designed to organize information 

from the architecture model and present it using models (e.g., graphs, tables, figures.) 

catered to a specific audience who can then use the model insights for system design and 

for decision making purposes.  The viewpoints outlined by DoDAF 2.0 are summarized 

in the next section and shown in Figure 12.  

  
Figure 12.  DoD Architecture Framework v. 2.0—Viewpoint (From Department of 

Defense 2009, 140) 

The DoDAF defines each of these viewpoints as summarized below: 

All Viewpoint: describes the overarching aspects of architecture 
context that relate to all viewpoints. 

Capability Viewpoint: articulates the capability requirements, the 
delivery timing, and the deployed capability. 

Data and Information Viewpoint: articulates the data relationships 
and alignment structures in the architecture content for the capability 
and operational requirements, system engineering processes, and 
systems and services. 
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Operational Viewpoint: includes the operational scenarios, activities, 
and requirements that support capabilities. 

Project Viewpoint: describes the relationships between operational 
and capability requirements and the various projects being 
implemented. The Project Viewpoint also details dependencies among 
capability and operational requirements, system engineering processes, 
systems design, and services design within the Defense Acquisition 
System process. An example is the V-charts in Chapter 4 of the 
Defense Acquisition Guide. 

Services Viewpoint: the design for solutions articulating the 
Performers, Activities, Services, and their Exchanges, providing for or 
supporting operational and capability functions. 

Standards Viewpoint: articulates the applicable operational, business, 
technical, and industry policies, standards, guidance, constraints, and 
forecasts that apply to capability and operational requirements, system 
engineering processes, and systems and services. 

Systems Viewpoint: the design for solutions articulating the systems, 
their composition, interconnectivity, and context providing for or 
supporting operational and capability functions. (Department of 
Defense 2009, 140)  

DoDAF 2.0 defines specific model viewpoints, some of which are required for 

major system acquisitions, and provides examples of specific models that meet these 

viewpoint requirements. Unlike previous releases, however, the latest DoDAF 2.0 

focuses on describing the meta-model which underlies its structure and does not dictate a 

specific model or modeling language that must be used to satisfy any particular view or 

viewpoint.  Because of this, any MBSE tool and technique that includes a wide range of 

different modeling tools, types, and languages—including structured analysis and 

SysML—are capable of being compliant with the DoDAF 2.0 requirements.   

2. Structured Analysis and Design Technique 

As is described in the Handbook of Systems Engineering and Management, “the 

structured analysis approach has its roots in the structured analysis and design technique 

(SADT) that originated in the 1950s and encompasses structured design, structured 

development, the structured analysis approach of DeMarco, and structured systems 

analysis” (Sage and Rouse 2011, 483–484)  Structured analysis and design is a process 

oriented approach that outlines four primary components which together describe the 
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functional architecture of a system.  These four components and their relative interactions 

are represented in Figure 13, and include the process model, data model, and rule model, 

along with an integrated system dictionary to manage the data supporting each model 

category to ensure consistency.  SADT also includes dynamics modeling techniques 

which integrate across all three of the model categories shown. 

 
Figure 13.  Components of the Structured Analysis and Design Technique (From Sage 

and Rouse 2011, 485)  

The most commonly used model diagrams and techniques employed to the 

process model, data model, rule model, and dynamics model are summarized in Table 3. 
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SADT Model Associated Diagrams and Techniques  

Process Model • IDEF0—Data Flow Diagrams 

Data Model • IDEF1X—Entity Relationship 
Diagrams 

Rule Model • Decision Trees and Tables 
• Structured English 

• Mathematical Logic 

Dynamics Model • State Transition Diagrams 
• Functional Flow Block 

Diagrams (FFBDs) 

Table 3.   Structured Analysis and Design Models, Diagrams, and Techniques (From 
Long, 2010, 7) 

These models (and the integrated dictionary supporting them) support the 

hierarchical decomposition of a system as its architecture is further modeled and defined.  

For instance, the decomposition of an IDEF0 model used to capture the functional and 

physical architecture of a system is presented in Figures 14 and 15.   

 
Figure 14.  IDEF0 Semantic Diagram (From Sage and Rouse 2011, 486) 
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Figure 15.  IDEF0 Activity Diagram—First Two Levels (From Sage and Rouse 2011, 

487) 

Modeling tools, such as CORE by the Vitech Corporation, provide a 

comprehensive integrated toolset to support MBSE techniques and the development of 

the models outlined by the structured analysis and design technique.  Vitech’s CORE tool 

defines a specific modeling language, called the system definition language (SDL), which 

“expresses and represents the model clearly, so that understanding and insight can arise” 

(Long and Scott 2011c, 32).  A mapping of some of the components of SDL to MBSE 

examples is shown in Table 4.  
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Table 4.   Components of the SDL Mapped to MBSE Examples (From Long and Zane 

2011a, 37) 

The CORE modeling tool employs an internal SDL model taxonomy, shown in 

Figure 16, in order to realize the benefits of an integrated system dictionary capable of 

generating a wide variety of process, data, rule, or dynamics models and views, and each 

of these leverage the same common model database.  As previously discussed, MBSE 

tools and techniques such as that represented by the Vitech CORE toolset can be 

compliant with DoDAF 2.0.  In reference to the model taxonomy, shown in Figure 16, A 

Primer for Model Based Systems Engineering states:  

In the case of DoDAF, the Architecture class acts as a key element.  It 
brings the physical natures of the operational and system sides 
together.  Thus, in a physical sense, it is clear that a particular 
Architecture entity provides the context for understanding how a set of 
operational entities and a corresponding set of system entities relate. 
(Long and Zane 2011a, 37–38) 
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Figure 16.  Relationship of the Parts of Speech From Common Language to the MBSE SDL (From Long and Zane 2011a, 38) 
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3. Systems Modeling Language (SySML) 

SysML, like its parent language, the Unified Modeling Language (UML) for 

software engineering, was developed with comprehensive support to modeling and 

simulation to include powerful and rigorous frameworks to optimize analysis of 

alternatives (AoAs) and trade studies.  As is stated in OMG Systems Modeling Language 

V. 1.3:  

SysML is designed to provide simple but powerful constructs for 
modeling a wide range of systems engineering problems. It is 
particularly effective in specifying requirements, structure, behavior, 
allocations, and constraints on system properties to support 
engineering analysis. (Object Management Group 2012, 25) 

Like the Structured Analysis and Design Technique, SysML also complies with 

DoDAF requirements and is capable of generating models across all DoDAF viewpoints 

to realize all benefits of the enterprise architecture framework.  

Compared to the document-centric approach, which is 
predominately used in conceptual modeling today, SysML models 
offer a much more useful format in terms of reusable blocks of 
information. Compartmentalizing information allows it to be 
offered to readers in more digestible quantities; different amounts 
and different sections of information can be offered to readers 
depending on the role they play in the study. Once built in 
appropriate software, a SysML model also allows for more 
intuitive navigation through the information, again aiding the 
communication process. (Liston, Kabak, Dungan, Byrne, Young, 
and Heavey 2010, 304) 

a. History of SysML 

As is described in Liston et al. 2010, in January 2001, the International 

Council on Systems Engineering (INCOSE) Model Systems Design Workgroup made the 

decision to adopt and expand for systems engineering applications the Unified Modeling 

Language (UML), a popular tool used in the Software Engineering discipline. INCOSE 

began collaborating with the Object Management Group (OMG), which maintains the 

UML specification, and together they developed the set of requirements for SysML.  In 

March 2003, these requirements were issued by OMG as part of the UML for systems 

engineering request for proposal (RFP). In response to the OMG RFP, a work group 
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including members from industry and tool vendors was formed in May 2003.  The 

SysML Partners, as this group was known, initiated an open source specification project 

to develop the SysML standard according to the outlined requirements.  In September 

2007, the SysML Partners, in conjunction with the OMG, published SysML Version 1.0—

the first official SysML standard. Following the release of the official SysML standard, 

another group called the SysML Revision Task Force was established to monitor the 

specification and recommend revisions as necessary. In December 2008, the OMG 

SysML v1.1 standard was published, incorporating the first set of revisions to the standard 

based on inputs from across the systems engineering community.  The current version, 

OMG SysML v1.3, was published by OMG in June 2012 and is the basis for all SysML 

discussions within this report (Liston et al. 2010, 282–283). 

b. Overview of SysML 

SysML reuses some components and provides extensions to UML.  The 

Venn diagram in Figure 17 shows a representation of the interrelationship between UML 

and SysML (Object Management Group 2012, 7). 

 
Figure 17.  Overview of the SysML and UML Interrelationship (From Object 

Management Group, 7) 
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According to the OMG SysML specification Version 1.3, SysML was 

designed based on six fundamental principles, summarized below.  

Requirements-driven: SysML was designed to satisfy the 
requirements of the UML for Systems Engineering RFP 

UML reuse: SysML reuses UML wherever practical to satisfy the 
requirements of the RFP, and when modifications are required, they 
are done in a manner that strives to minimize changes to the 
underlying language. Consequently, SysML is intended to be relatively 
easy to implement for vendors who support UML 2 

UML extensions: SysML extends UML as needed to satisfy the 
requirements of the RFP. The primary extension mechanism is the 
UML 2 profile mechanism 

Partitioning: The package is the basic unit of partitioning in the 
SysML specification. The packages partition the model elements into 
logical groupings that minimize circular dependencies among them 

Layering: SysML packages are specified as an extension layer to the 
UML metamodel 

Interoperability: SysML inherits the XMI interchange capability 
from UML. SysML is also intended to be supported by the ISO 10303-
233 data interchange standard, otherwise known as Application 
Protocol 233 or AP233, to support interoperability among other 
engineering tools.  The specific AP233 interoperability will be 
discussed later in this report in reference to realizing the proposed 
systems engineering solution at SMC and across the DoD Space 
Acquisition community. (Object Management Group 2012, 8) 

The SysML diagram taxonomy is shown in Figure 18.  The two new 

diagram types that have been added to SysML include the requirement diagram and the 

parametric diagram, as shown.  Each of the diagram types is then summarized (Object 

Management Group 2012, 167–172). 
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Figure 18.  SysML Diagram Taxonomy (From Object Management Group 2012, 167)   

The system structure is represented by block definition diagrams and 

internal block diagrams, which are based on the UML class diagram and UML composite 

structure diagram, respectively.  Liston et al. (2010) summarize each of the SysML 

diagram types as defined below: 

The block definition diagram describes the system hierarchy and 
system/component classifications through the representation of 
structural elements called blocks. Any block that exhibits behavior 
must have an associated state machine diagram 

The internal block diagram describes the internal structure of a 
system in terms of its parts, ports, and connectors 

The parametric diagram is a restricted form of the internal block 
diagram and represents constraints on property values.  This 
diagram is used to integrate behavior and structure models with 
engineering analysis models such as performance, reliability, and 
mass property models 

The package diagram represents the organization of a model in 
terms of packages that contain model elements 

The behavior diagrams include the use-case diagram, activity 
diagram, sequence diagram, and state machine diagram. 

The activity diagram represents the flow of data and control 
between activities and shows how actions transform inputs into 
outputs 
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The sequence diagram represents the interaction between 
collaborating parts of a system in terms of a sequence of 
exchanged messages 

The state machine diagram describes the state transitions and 
actions that a system or its parts performs when triggered by events 

The use-case diagram provides a high-level description of the 
system functionality in terms of how a system is used by external 
entities (i.e., actors) 

The requirements diagram is neither structural nor behavioral. It 
supports requirements traceability by representing text-based 
requirements.  It also provides a modeling construct for modeling 
the relationship between requirements and other model elements 
that satisfy or verify them. (Liston, et al. 2010, 283–285) 

c. SysML Purpose and Key Features 

SysML is a general-purpose graphical modeling language that provides 

rigorous MBSE capabilities in support of the complete system acquisition lifecycle—

including analysis, specification, design, verification, and validation.  It can be applied to 

any system, simple or complex, including but not limited to software, hardware, data 

processing, personnel, organizations, and procedures.   

The language is intended to help specify and architect systems and 
specify their components that can then be designed using other 
domain-specific languages such as UML for software design and 
VHDL and three-dimensional geometric modeling for hardware 
design. SysML is intended to facilitate the application of an MBSE 
approach to create a cohesive and consistent model of the system. 
(Friedenthal, Moore and Steiner, Chapter 3: Setting Started with 
SysML 2012b, 29)   

Employing the diagrams summarized above, SysML can represent many 

different system aspects, including:  

• Structural composition, interconnection, and classification 

• Function-based, message-based, and state-based behavior 

• Constraints on the physical and performance properties 

• Allocations between behavior, structure, and constraints 

• Requirements and their relationship to other requirements, design 
elements, and test cases. (Friedenthal, Moore and Steiner 2012b, 29)   
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Detailed examples of each of these diagrams, along with a discussion of 

their representation of the above system aspects, are provided in the SysML use case in 

the following chapter.    

d. SysML Support to Modeling and Simulation  

Through the use of parametric models, SysML supports a wide range of 

modeling and simulation and engineering analyses activities, including: trade studies, 

sensitivity analysis, design optimization, and analysis of performance, reliability, and 

physical properties of a system (Friedenthal, Moore and Steiner 2012c, 185).  These 

parametric models are used in SysML to capture constraints on the properties of a 

system, which can then be computed and evaluated by an analysis tool.   

Constraints are expressed as equations whose parameters are 
bound to the properties of a system.  Each parametric model can 
capture a particular engineering analysis of a design. Multiple 
engineering analyses can then be captured in parametric models 
that are related to a system design alternative, and then executed to 
support trade-off analysis. (Friedenthal, Moore and Steiner 2012c, 
185)   

As will be seen in the SysML case study in the following chapter, a 

special model block called the constraint block, as shown in Figure 19, is used to define 

equations and support the construction of parametric models. 

 
Figure 19.  Two Reusable Constraint Blocks Expressed on a SysML Block Definition 

Diagram (From Friedenthal, Moore and Steiner 2012c, 189)   
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Figure 19 shows two constraint blocks, Real Sum and Rate Monotonic 

Model. Real Sum is a simple reusable constraint where one parameter, sum, equals the 

sum of a set of operands, as expressed in the constraint in the constraints compartment.  

(Friedenthal, Moore and Steiner 2012c, 189–190) 

Constraint blocks are used in SysML to support analysis of alternatives 

and trade studies.  Each alternative solution is defined by a set of measures of 

effectiveness (MOEs) that corresponding to specific evaluation criteria of the 

requirements levied on the system.  Equations for these evaluation criteria are applied to 

the model and used to calculate a value for each MOE.  The defined hierarchy of the 

SysML model is used to allocate these specific evaluation criteria values to applicable 

elements throughout the model.  Using this model construct, the MOEs for each 

alternative solution can be evaluated and compared against an objective function.  Results 

for each alternative are then compared in an analysis of alternatives to help inform 

decision makers.  As an example, Figures 20–22 show a simple trade study evaluating 

two variants of a camera designed to operate in low-light conditions (Friedenthal, Moore 

and Steiner 2012c, 200–202). 

 
Figure 20.  Two Variants of a Camera for Handling Low-Light Conditions are Defined 

Using a SysML Block Definition Diagram (From Friedenthal, Moore and 
Steiner 2012c, 201)   
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Figure 21.  A SysML Block Definition Diagram Represents an Analysis Context, Laying 

out a Trade Study for the Two Camera Variants (From Friedenthal, Moore 
and Steiner  2012c, 201)   

 
Figure 22.  Trade-off Results Between the Two Low-Light Camera Variants (From 

Friedenthal, Moore and Steiner 2012c, 202)   
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In the camera example shown in Figures 20–22, the low-light camera 

defined as Option 2 would be the preferred solution, given its higher score of 450 over a 

score of 400 for Option 1, as shown in Figure 22. In order to further build out a more 

rigorous trade-off analysis, additional constraint blocks could be added to correspond to 

additional MOEs targeting other properties of the system.  Another example of this 

approach to trade studies is shown later in the SysML case study.   

e. SysML Tools 

There are many commercial and open source tools available for 

developing SysML models.  The most significant of these tools are summarized briefly 

below:  

• Artisan Studio by Atego is a UML tool that has been developed to fully 
support the SysML profile (“Artisan Studio”  2013) 

• Tau G2 by IBM is a standards-based, model-driven development solution 
for complex systems (“Rational Tau,” IBM website 2013) 

• Rational Rhapsody also by IBM is a UML/SysML-based model-driven 
development for real-time or embedded systems (“Rational Rhapsody 
Family,” IMB website 2013)  

• MagicDraw by No Magic is described as a business process, architecture, 
software and system modeling tool, having a specific plugin to support 
SysML modeling (“Magic Draw,” No Magic website 2013) 

• Enterprise Architect by Sparx Systems is a UML analysis and design tool 
with a module for developing SysML models (“Enterprise Architect,” 
Sparx Systems website, 2013)  

• CORE Spectrum and GENESYS by the Vitech Corporation provides a 
foundation for enhanced system modeling, system analysis, and expedited 
communication.  Vitech has recently added some basic views in support of 
SysML diagrams (“SysML Modeling,” Vitech website 2013)  

• Modelio is an open source modeling environment with an open-source 
version and fully featured commercial version of an SysML plugin 
(“SysML Architect,” Modelio Store website 2013)  

• TOPCASED-SysML is a SysML editor that has been developed by the 
open source community (“TOPCASED-SYSML,” Fusion Forge website 
2013) 
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• Papyrus for SysML is an open source UML tool based on the Eclipse 
environment and includes all of the stereotypes defined in the SysML 
specification (Papyrus UML website 2013) 

The MagicDraw tool by No Magic was selected as the SysML model for 

use in the Overhead Persistent Infrared (OPIR) use case detailed in the following chapter.  

MagicDraw was selected over the other tools primarily because of its availability—free 

trial versions of both MagicDraw and its SysML module were available and included 

access to the full features of the tool, unlike trial versions of the other systems.  In 

addition to the commercial versions of MagicDraw and CORE, the open-source tools 

Modelio, TOPCASED, and Papyrus were installed and experimented with by the author 

of this report, but the commercial applications were much more easily adopted given their 

more streamlined user interfaces and more complete guidance and support 

documentation.  MagicDraw was selected over CORE because it included much more 

robust SysML modeling capabilities.  Additionally, MagicDraw, along with the SysML 

module was the tool used to develop the diagrams and example problems contained 

within the OMG SysML Version 1.3 specification, allowing for maximum commonality 

between the SysML guidance and the tool used to build the model for the case study.   
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IV. CASE STUDY—OVERHEAD PERSISTENT INFRARED 
(OPIR) MISSION AREA ARCHITECTURE 

A. PURPOSE 

The purpose of this case study is to demonstrate how SysML can be applied to 

DoD Space Systems and support architecture development and trade studies in support of 

decision making. 

B. SCOPE 

This case study is not intended to highlight every aspect of SysML, nor is it 

intended to reflect a complete architecture for the Overhead Persistent Infrared (OPIR) 

mission area.  Rather, the intent of this example problem is to demonstrate how SysML 

diagrams can be applied and to illustrate the primary features of SysML, including the 

interrelationships among the different model elements and diagrams.  At least one 

diagram of each SysML diagram type, presented in Figure 18, is included in this case 

study to best demonstrate these features of SysML.  The structure of this case study 

example mimics the diagram examples provided in the OMG SysML Version 1.3 

specification (Object Management Group 2012, Annex C) in order to maximize the 

correlation between this case study problem and the overarching SysML guidance 

documentation. 

Given the assumed limitations to the OPIR architecture represented by SysML in 

this case study, there will be functions, elements, and objects missing from the OPIR 

architecture itself in each of the diagrams presented in order to maintain relative 

simplicity within each diagram to ensure that the SysML model elements and 

interrelationships can be easily identified.   

C. PROBLEM SUMMARY 

The DoD Overhead Persistent Infrared (OPIR) mission area is broken into four 

mission areas:  
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• Missile Warning 
• Provides first response reporting of launch events anywhere in 

world 
• Enables precise launch trajectory and impact point computation  

• Missile Defense 
• Cues missile defense systems  
• Identifies location of launches for ground operations 

• Technical Intelligence 
• Detects detailed missile phenomenology to characterize threats and 

tactics 

• Battlespace Awareness 
• Provides insight into battlefield events and assessment of 

operations  
• Enables more efficient resource management 

Currently, there are two major DoD space systems supporting the OPIR mission 

area: the Defense Support Program (DSP) and the Space Based Infrared System (SBIRS).  

DSP is the legacy OPIR system, first launched in 1966.  SBIRS is the current DoD 

Acquisition Program of Record (POR) for the OPIR mission area, and is described as an 

integrated system of systems that includes satellites in geosynchronous orbit (GEO), 

sensors hosted on satellites in highly elliptical orbit (HEO), and ground-based data 

processing and control (LAAFB 2013).  This case study focuses on defining the 

architecture (to include requirements, performance analyses, structure, and behavior) of 

the SBIRS system in support of the OPIR mission area system architecture (MASA), with 

a specific focus on trade study design decisions concerning the SBIRS spacecraft power 

subsystem.   

D. SYSML DIAGRAMS 

This case study will focus on demonstrating the following SysML content and 

diagrams, in the order listed: 

• SysML diagrams used to establish the system context, system boundaries, 
and top-level use cases 

• SysML diagrams used to analyze top-level system behavior using 
sequence diagrams and state machine diagrams 

• SysML diagrams for capturing and deriving requirements 
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• SysML diagrams and techniques to depict system structure using block 
hierarchy and part relationships 

• SysML diagrams and techniques to illustrate the relationship of system 
parameters, performance constraints, analyses, and timing diagrams 

• SysML diagrams and techniques depicting the interfaces and flows in a 
structural context 

• SysML diagrams and techniques capturing behavior modeling and 
functional flow allocation 

1. Internal Block Diagram—System Context 

The SysML Internal Block Diagram shown in Figure 23 shows an example of a 

top level system enterprise and the external systems and actors which relate and interact 

with the system.  Such a diagram would likely be user-generated and satisfy the DoDAF 

requirement for an Operational View 1 (OV-1).  The various elements of the context 

diagram are represented by SysML blocks, and the type of block is identified at the top of 

the block.  For example, block types in the context diagram in Figure 23 include 

<<system>> and <<external>> stereotypes.  These “stereotypes” are defined by the 

system modeler and, while they are not structured terms of the SysML language, they are 

useful classifications for the modeler and user to identify the system of interest relative to 

its environment.  At this point in the model development, the associations between the 

blocks (shown as connecting lines) represent abstract conceptual relationships between 

the entities.  These relationships will be defined in greater detail by subsequent SysML 

diagrams.   
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Figure 23.  SysML Internal Block Diagram Establishing the Context of the OPIR System 

Using a User-Defined Context Diagram 

2. Use Case Diagram—Top Level 

A SysML use case diagram for the SBIRS system is shown in Figure 24.  The 

SBIRS system is shown as the subject of the use case diagram and the actors (including 

the operator, Air Force, engineering, prime contractor, and Department of Defense) are 

shown interacting with component or child use cases (i.e., operate SBIRS, develop the 

system, operationalize the system, and maintain the system).   
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Figure 24.  SysML Use Case Diagram Establishing the Top Level Use Cases for the 

SBIRS System Which Satisfies the OPIR Mission Area 

3. Use Case Diagram—Operational Level 

The hierarchical breakdown of the SysML use case diagrams introduced in Figure 

24 is shown in Figure 25, specifically those associated with “Operate SBIRS.”  More 

precisely, this is a Goal-Level SysML use case diagram.  The “goals” of the “fly the 

spacecraft” component of the “operate SBIRS” include initialize the spacecraft, 

maneuver, control payload, and collect and process data.  The association of these goals 

to the use cases is shown as being “extended by” and “included within” the “fly the 

spacecraft” and “process and distribute data” use cases.   
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Figure 25.  SysML Use Case Diagram Establishing the Operational Use Cases Which 

Further Refine the “Fly the Spacecraft” Use Case 

4. Sequence Diagram—Initialize Black Box 

The SysML sequence diagram in Figure 26 shows the interactions between the 

operator (actor) and the SBIRS (system) necessary for the “fly the spacecraft” use case 

introduced in Figure 25.  At this level of abstraction, directionality of the interactions is 

not captured.  Instead, this top-level sequence diagram provides insight into the 

sequencing and hierarchal interdependencies of lower level sequence diagrams.  The term 

“black box” is used in this case to identify that the subject system, SBIRS, is interacting 

with outside external elements: the internal detail is not shown at this point in the model 

decomposition.    
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Figure 26.  SysML Sequence Diagram Establishing the “Black Box” Top-Level Use 

Cases and Their Interdependencies 

5. State Machine Diagram—Spacecraft Operational States 

The SysML state machine diagram in Figure 27 identifies and describes the 

interaction between the operational states of the SBIRS system introduced as part of the 

black box sequence diagram shown in Figure 26.  How these different operational states 

are triggered by the SysML model is shown later, as are the requirements that specify 

these operational states and the interactions and behaviors (e.g., drifting, activate, 
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acceleration) which trigger the system’s transition from one state to another. The SysML 

diagram in Figure 27 introduces how requirements are allocated throughout the SysML 

model.  As shown in Figure 27, the “Spacecraft Operational States” state machine 

diagram “refines” the “Power Source Management” requirement.  

 
Figure 27.  SysML State Machine Diagram Associated with the “Fly the Spacecraft” Use 

Case 

6. Decomposed Sequence Diagrams 

SysML sequence diagrams decomposing the top-level sequence diagram shown in 

Figure 26 are presented in Figures 28 and 29.  The first of these decomposed sequence 

diagrams, shown in Figure 28, is the “initialize spacecraft black box,” which shows the 

internal interaction, as defined by the “SendCommandToInitialize” and 

“InitializeSpacecraft” swimlines between the operator and the SBIRS system.   
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Figure 28.  SysML Sequence Diagram Capturing the “Black Box” Interaction for the 

“Initialize Spacecraft” Use Case 

The second decomposed sequence diagram, shown in Figure 29, presents an 

example of a “white box” sequence diagram detailing the interaction between the “Power 

Control Unit” and the “Electrical Power Controller,” two subsystems of the “Power 

Subsystem,” which is itself a sub-system to the SBIRS system of interest.  This structural 

parts breakdown is shown later in Figure 37.   
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Figure 29.  SysML Sequence Diagram Capturing the “White Box” Interaction for the 

“Initialize Spacecraft” Use Case 

7. Requirements Diagrams 

Three SysML requirements diagrams are shown in Figures 30, 31, and 32—

capturing the SBIRS requirements hierarchy, derived requirements, and power system 

requirement relationships, respectively.  Each of these requirements would be derived 

from the “OPIR Requirements Document” specification and input into the SysML model.  

The SBIRS requirements hierarchy shown in Figure 30 highlights some of these 

requirements.  The “affordability” requirement is shown expanded to indicate the level of 

detail that can be captured on a SysML diagram.  The SysML “containment” relationship 

(as shown by the cross hairs on one end of the relationship line) are used to show that a 

complex requirement is decomposed into simpler component requirements.   
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Figure 30.  SysML Requirements Diagram Establishing the OPIR Requirements Hierarchy 
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The SysML requirements diagram shown in Figure 31 provides an example of 

what the requirements hierarchy might look like at the lowest level of the requirements 

derivation and decomposition within the model.  The derived requirements, as indicated 

by the <<deriveReqt>> relationship, express the requirements in the OPIR Requirements 

Document specification in a manner that specifically relates them to the SIBRS system.  

This diagram shows the other end of the requirements allocation introduced by the state 

machine diagram in Figure 27 using the <<RefineBy>> relationship.  Additionally, this 

SysML diagram introduces the use of the <<Rationale>> object that can be attached to 

any SysML relationship.  In this case, the <<Rationale>> is attached to the relationship 

between the “Power System Loads” <<requirement>> and its <<derived requirement>> 

the “Power Source Management” <<requirement>>.   

 
Figure 31.  SysML Requirements Diagram Establishing the Derived Requirements and 

Rationale From the Lowest Tier of the Requirements Hierarchy  

The third SysML requirements diagram shown in Figure 31 details the 

requirement relationships associated with the “maneuver capability” requirement.  This 
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SysML diagram shows how the <<refine>> relationship can be used.  In this case, it 

indicates that “maneuver capability” requirement is <<refined>> by the “maneuver” use 

case.  This diagram also shows how a physical system component, such as the “power 

subsystem” can be shown to <<satisfy>> a requirement, in this case the “power system 

loads” requirement as shown in Figure 32 by the use of the <<satisfy>> relationship.  

Lastly, as will be elaborated later in this SysML case study, a <<test case>> class/block is 

identified and shown that it will be used to <<verify>> the “maneuver capability” 

requirement.   

 
Figure 32.  SysML Requirements Diagram Capturing the Relationships for the 

“Maneuver Capability” Requirement 

8. Activity Diagrams 

Figure 33 shows the top-level behavior of the “accelerate” function for the SBIRS 

system.  Specifically, this diagram attempts to allocate the system-level behaviors to the 

“powersubsystem” which has the designed behavior of “providepower.”  However, as the 

comment in Figure 33 suggests, the systems engineer cannot achieve the appropriate  

 

 



 60 

level of detail by modeling the behaviors at just this top-level and must further de-

compose the system behavior to fully identify those behaviors, which influence the 

“powersubsystem.”   

 
Figure 33.  SysML Activity Diagram Highlighting the Behavior for the “Accelerate” 

Function 

The top-level activities and object flows introduced in Figure 33 are further de-

composed, as shown in the SysML block definition diagram in Figure 34. 
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Figure 34.  SysML Block Definition Diagram Decomposing the Activities Associated 

with the “Accelerate” Function  

Given this de-composition of the top-level behavior associated with the 

“Accelerate” function of the SBIRS system, an activity diagram decomposing and 

detailing the “ProvidePower” activity is shown in Figure 35. This detailed SysML 

activity diagram includes the Actions which trigger the Activities and ObjectNodes 

introduced in Figure 34.  The frame outlined by the vertical lines is an example of SysML 

AllocateActivityPartitions.  These partitions provide insight into the allocation of the 

decomposed “ProvidePower” activities, including the “ProportionPower,” 

“ProvideThrusterPower, “ControlElectricPower,” and “ProvideElectircPower” activities 

to the physical system components/parts that must perform each of these activities, 

including the “PowerControlUnit,” “PropulsionSystem,” “ElectricalPowerController,” 

and “SolarPannels,” respectively.  Similarly, one can see how the object flows “Throttle,” 

“FilterPower,” and “ElecCurrent” interact between physical system components and the 

activities performed by those components. 
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Figure 35.  SysML Activity Diagram Providing a Detailed Behavior Model for the “Provide Power” Activity/Function 
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9. Block Definition Diagrams 

The following diagrams provide examples of SysML block definition diagrams 

and internal block diagrams.  The first of these block definition diagrams, shown in 

Figure 36, provides a refined decomposition and definition of the context diagram shown 

in Figure 23.  This breakdown of the OPIR domain using the block definition diagram 

clearly specifies that the interactions “Initialize Black Box” and “Initialize Spacecraft 

Black Box,” as shown in Figures 26 and 28, are owned by and therefore further refine the 

“OPIRDomain” block.  The “1..*” identifier at the child end of the association between 

the “Environment” block and the ““Debris/OtherSystem” and “SystemOrbit” blocks 

indicates that there can be “one to many” instances of “Debris/OtherSystem” or 

“SystemOrbit” associated with the space “Environment.” 

 
Figure 36.  SysML Block Definition Diagram Defining the OPIR Domain 

The block definition diagram shown in Figure 37 shows the top level 

decomposition of the SBIRS system into its physical subsystems.  For illustration 

purposes, the “ThrusterSubsystem” and “StructureSubsystem” are further decomposed 
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(incompletely) into the “Thrusters” and “GyroAssembly” sub-systems, respectively.  The 

solid-filled diamond shown at the parent end of the association between the “Thrusters” 

and the “ThrusterSubsystem” and the “GyroAssembly” and the “StructureSubsystem” in 

Figure 37 indicates a “composite aggregation,” or in other words, a “contained in” 

relationship, of the child, i.e., the “Thrusters” and “GyroAssembly,” to the parent, i.e., the 

“ThrusterSubsystem” and “StructureSubsystem.”  The un-filled diamond indicates a 

“shared aggregation” between two parts/blocks.  Therefore, it can be observed from 

Figure 37 that while the “Thrusters” and “GyroAssembly” parts are contained within the 

“ThrusterSubsystem” and “StructureSubsystem” blocks, respectively, both the 

“Thrusters” and the “GyroAssembly” are used by the “PowerSubsystem.”  A 

<<rationale>> object can be added to further describe these types of dual-associations, as 

shown in Figure 37.  

 
Figure 37.  SysML Block Definition Diagram Defining the Structure of the SBIRS 

System 

Figure 38 further defines the model elements introduced in Figure 37 by showing 

how they are connected together within the “SBIRS” block.    
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Figure 38.  SysML Internal Block Diagram Capturing the Internal Structure of the SBIRS 

System 

The “PowerSubsystem” introduced in Figure 37 is further decomposed into its 

sub-systems in Figure 39.  This figure shows additional examples of the “use-not-

composition” relationships between components, as indicated by the un-filled white 

diamond shape.   

 
Figure 39.  SysML Block Definition Diagram Defining the Structure of the Power 

Subsystem 
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While Figure 39 shows the defining structure of the “PowerSubsystem” 

component, it does not completely define how the components internal to the SBIRS 

power subsystem are used and how they interact and communicate with each other.  The 

internal block diagram shown in Figure 40 does just this by defining the connectors 

between parts, ports, and connectors with item flows.  The “use-not-composition” 

relationship of the “GyroAssembly” as defined in earlier diagrams is indicated in Figure 

40 using a dashed-line border for the block.  The ports are shown in Figure 40 as boxes 

with direction arrows placed either on a block or on the border of the diagram, indicating 

flows external to the diagram.  An example of an item flow between ports is shown in 

Figure 40 as the fuel flow between the “FuelPump” and the “Thrusters.”  “Required and 

provided” interfaces specifying each block are indicated by the ball and socket icons 

extended from some of the ports shown in Figure 40. 
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Figure 40.  SysML Internal Block Diagram Defining the Internal Structure of the Power Subsystem 
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Another example of an internal block diagram is shown in Figure 41.  This 

internal block diagram within the “PowerSubsystem” further refines the Controller Area 

Network (CAN) bus architecture using the ports defined earlier.   

 
Figure 41.  SysML Internal Block Diagram Identifying the Connectors into the CAN Bus 

The explicit structural allocation between the connectors introduced in Figure 41 

is further defined in Figure 42.   
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Figure 42.  SysML Internal Block Diagram Detailing the Flow Allocation to the Power 

Subsystem 

The port identified in Figure 40 for the “FuelTankAssembly” and 

“PropulsionSubsystem” along with the fuel flow between the two ports is further defined 

in Figure 43.  This diagram defines the specific properties of the “FuelFlow,” including 

the “fuelReturn” and “fuelSupply” item flows first introduced in Figure 40.  Figure 43 

also identifies the measured and observed properties, pressure and temperature, of the 

fuel itself within the “Fuel” block.   
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Figure 43.  SysML Block Definition Diagram Detailing the Definition of “Fuel Flow” 

Figure 44 expands the “FuelTankAssembly” and “PropulsionSubsystem” blocks 

and further defines the “fuelDelivery” and “fdist” connectors introduced in Figure 40.  

The expansion of the “PropulsionSubsystem” reveals the “FuelRegulator” and “FuelRail” 

parts.  These sub-system component parts are related to the original components through 

an allocation relationship, as indicated by the “allocatedFrom” box.  Furthermore, it can 

be observed in this internal block diagram that the “fuelDelivery” connector is really two 

distinct connectors, “fuelSuppy” and “fuelReturn.”  The “Fuel” block within the 

“FuelTankAssembly” represents a quantity of fuel remaining.  This fuel is drawn from 

the “Fuel” block to the “FuelPump,” from which it is provided to the “PropulsionSystem” 

via the “fuelSupplyLine,” as shown in Figure 44. The “fuelReturnLine” flow indicates 

that an un-used fuel can be returned to the “Fuel” block for later use.   
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Figure 44.  SysML Internal Block Diagram Detailing the Internal Structure of the Fuel 

Delivery Subsystem  

10. Parametric Diagrams and Performance Analysis 

Figure 45 introduces the SysML parametric diagram.  Specifically, Figure 45 

defines precisely how the fuel flowrate is related to “fuelDemand” and “fuelPressure.”  

These relationships set the stage for modeling the precise engineering physics and 

behaviors of the item flows between the ports, connecting components within the power 

subsystem, a component with the SBIRS system.  Such detailed and comprehensive 

definition of the system architecture, with equations precisely defining the relationships, 

can later be used to perform modeling and simulation in support of trade studies between 

multiple concept system architectures.   
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Figure 45.  SysML Parametric Diagram Defining the Fuel Flow Constraints  

The following diagrams further illustrate how SysML can be used to perform such 

an engineering analysis. The various engineering equations (along with their relationships 

to the domains and contexts previously introduced) that will be used to conduct an 

analysis of the propulsion sub-system are shown in Figure 46.  These equations are 

modeled as <<constraint>> blocks within SysML, as shown.   

 
Figure 46.  SysML Block Definition Diagram Defining the Analysis for the SBIRS 

Engineering Development  
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Figure 47 depicts a SysML package diagram, which provides additional detail of 

the user-defined Performance Viewpoint and the elements that populate the SBIRS 

specific “PerformanceView.”  The specifications of the Performance Viewpoint itself are 

identified using the SysML <<view point>> block.  Many SysML diagrams  support the 

“PerformanceView” representation of the Performance Viewpoint, including the 

“Operator” actor, “Fly the Spacecraft” use case, and “Performance” requirement, all of 

which were introduced and defined in greater detail earlier in this chapter.  Figure 47 also 

introduces the measures of effectiveness (MOEs) that will be used as part of the 

engineering analysis of this particular propulsion sub-system architecture as part of the 

SBIRS system.   

The performance viewpoint shown in Figure 47 is analogous to the “operational 

viewpoint” defined by the DoDAF, as previously discussed.  This is one example of how 

SysML is something that can be related to and is compliant with DoDAF 2.0.   
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Figure 47.  SysML Package Diagram Establishing the Performance View and Viewpoint 

of the OPIR Model 

The MOEs introduced in Figure 47 are further defined in the SysML parametic 

diagram shown in Figure 48.  This diagram describes how the overall cost effectiveness 

of the particular propulsion sub-system design alternative is evaluated against each of the 

defined MOEs.  Figure 48 also introduces the <<objectiveFunction>> that is used to 

measure and compare each design alternative as part of an analysis of alternatives or 

trade study.  In order to provide consistency between the analysis of various design 

alternatives, the same equations, objective function, and MOEs along with the 

relationships between each as shown in Figure 48 must be used for the analysis of each 

alternative.   
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Figure 48.  SysML Parametric Diagram Defining the Measures of Effectiveness and 

Objective Function for Engineering Analysis 

One of the most significant life-limiting factors of any spacecraft is the on-board 

fuel.  As such, the efficiency of a spacecraft’s use of its fuel to perform activities such as 

station-keeping maneuvers is a key requirement to the design of the propulsion sub-

system.  In order to assess the efficient use of fuel by the propulsion sub-system specified 

for this example, we can examine the constraint blocks and properties necessary to 

evaluate the fuel efficiency presented in Figure 49.  The equations and interactions shown 

in Figure 49 establish the mathematical relationships for the fuel efficiency calculations.   
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Figure 49.  SysML Parametric Diagram Establishing the Mathematical Relationships for Analysis 
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The “OrbitalMechanics” constraint block introduced in Figure 49 is further 

decomposed in Figure 50.  This diagrams shows the use of SysML Constraint Nodes, 

identifying the equation associated with each constraint within the {} brackets.  

<<rationale>> blocks can also be used to provide a visual of the equations used for each 

constraint, as shown.  As with other SysML diagrams, the internal parametric diagram 

shown in Figure 50 shows the inputs and outputs of the parent “OrbitalMechanics” block 

as entering from the left side of the diagram and exiting the right side of the diagram.   

 
Figure 50.  SysML Parametric Diagram Detailing the “Orbital Mechanics” Mathematical 

Model 

Utilizing the engineering constraints applied to components throughout the 

SBIRS architecture decomposition, the SysML architecture becomes a powerful 
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executable model that can be used by designers, systems engineers, and ultimately 

decision makers to perform Modeling and Simulation and Analysis of Alternatives or 

trade studies comparing the various system designs and implementations that satisfy the 

architecture.  An example of a report that can be generated from this executable model is 

shown in Figure 51 for the “Maximum Delta-V Acceleration Analysis” conducted against 

the propulsion sub-system of the SBIRS system using the architecture and associated 

engineering equations/constraints outlined in this case study.  As indicated by the SysML 

timing diagram in Figure 51, this particular analysis satisfies the “ManueverCapability” 

requirement as shown in Figure 32.  

 
Figure 51.  SysML Timing Diagram Showing Sample Results from a SysML Parametric 

Analysis.  This Example Summarizes Results from the Maximum 
Acceleration Analysis  
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Additional parametric models and engineering analysis can be generated based on 

the unique requirements of the system being modeled. All results from lower-level 

engineering analysis, such as the acceleration analysis summarized in Figure 51, can then 

be rolled up through each level of the system architecture de-composition and ultimately 

result in top level performance metrics for a particular system of interest.  By analyzing 

many different system concepts this way, measured against the same architecture de-

composition and SysML model, the assessed performance of each system concept can be 

compared against the cost and other programmatic factors of interest.  Then, using 

analysis tools such as cost-effectiveness comparisons, as described in Chapter III: Section 

D of this paper, decision makers can make truly educated decisions based on a rigorous 

engineering analysis.   

The SysML diagrams developed for the SBIRS system implementation to the 

OPIR Mission Area Architecture illustrates how SysML, combined with the concepts of 

model based systems engineering, can provide extremely powerful engineering tools in 

support of systems engineering.  Examples of some of the commonly asked questions that 

could be answered with relative ease and great fidelity once a structured SysML model is 

complete are provided below: 

• What orbital regimes (inclination, altitude, etc.) and at what note 
(geographical longitude of the ascending note) should the SBIRS 
spacecraft be placed in to optimize coverage area? Revisit time? Dwell 
time? Sensor resolution?  

• How many spacecraft are required to achieve mission requirements? 

• What Infrared payload detector material should be used to optimize 
payload performance? 

• What size payload telescope should be used to optimize payload 
performance? 

• How much fuel is required to sustain the spacecraft for a required 
duration? 

• What is the overall reliability of the SBIRS spacecraft? 

• What structural, thermal, and other impacts does the power subsystem 
inflict on the thermal control subsystem? The structure/spacecraft bus 
subsystem? 
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Ultimately, defining the system architecture by answering all of the questions 

above, an executable SysML architecture could be used to answer the question: How well 

does any particular architecture, defined by decisions made to the questions above, satisfy 

the mission requirements (missile warning, missile defense, technical intelligence, and 

battlespace awareness)?  MBSE is a powerful part of helping to answer this question by 

providing all stakeholders, from the design engineers and architects all the way up to the 

highest level decision maker, with detailed products (models and views).  These MBSE 

products provide stakeholders with easily digestible insight into the robust engineering 

analysis conducted by the SysML architecture framework and can be used to enable 

highly informed and effective decision making based on detailed analysis.   

E. ARCHITECTURE DEVELOPMENT—HEURISTICS 

In effort to outline basic guidelines for developing a system architecture, such as 

the OPIR MASA and the SBIRS system implementation of this architecture shown in this 

SysML case study, the author of this report has developed ten heuristics; these heuristics 

have been developed through the writing of this report as well as from interactions with 

other systems, and they are provided in Appendix A.   

The Merriam-Webster dictionary defines heuristics as “aids to learning, 

discover[ing], or problem-solving by experimental and especially trial-and-error 

methods” (Merriam-Webster Dictionary, under “heuristics” 2013).  Another term for 

heuristics, used often in the Department of Defense acquisition community, is to say 

“lessons learned.”  Heuristics are subjective by nature as general learning points gained 

through human experience (Giammarco 2012).  As Maier and Rechtin state in The Art of 

Systems Architecting, “the format of heuristics is words expressed in the natural 

languages” (Maier and Rechtin 2009, 31), the 10 heuristics provided in Appendix A are 

written in the first person and refer to real-life examples and experiences of the author of 

this report.  As such, the writing style used in Appendix A differs drastically from that of 

the body of this report, in order to communicate the more subjectively derived knowledge 

often expressed in heuristics and lessons learned.    
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V. IMPLEMENTATION OF MODEL BASED SYSTEMS 
ENGINEERING AND ENTERPRISE SYSTEMS ENGINEERING 

TECHNIQUES AT THE SPACE AND MISSILES SYSTEM CENTER 

A. TRANSITIONING TO MBSE 

According to Friedenthal, Moore, and Steiner, 

Models and related diagramming techniques have been used as part of 
the document-based systems engineering approach for many years, 
and include functional flow diagrams, behavior diagrams, schematic 
block diagrams, N2 charts, performance simulations, and reliability 
models, to name a few. However, the use of models has generally been 
limited in scope to support specific types of analysis or selected 
aspects of system design. The individual models have not been 
integrated into a coherent model of the overall system, and the 
modeling activities have not been integrated into the systems 
engineering process. The transition from document-based systems 
engineering to MBSE is a shift in emphasis from controlling the 
documentation about the system to controlling the model of the 
system. MBSE integrates system requirements, design, analysis, and 
verification models to address multiple aspects of the system in a 
cohesive manner, rather than a disparate collection of individual 
models. (Friedenthal, Moore and Steiner 2012a, 20) 

As Friedenthal, Moore, and Steiner suggest, it is not trivial for an organization to 

adopt a fully integrated MBSE approach.  Furthermore, it can be extremely challenging 

for an organization to adopt a principle such as MBSE using a common language and 

approach, such as SysML.  The DoD is certainly not immune to these challenges.  In fact, 

the DoD may be an organization where implementing such a transformative change 

would be the most challenging.  Therefore, a gradual implementation of the MBSE 

principles and use of the SysML language to realize the full potential of MBSE is 

proposed.  Since attempting to adopt both MBSE and SysML at once would likely prove 

extremely difficult, if not impossible, options are explored for first adopting the 

principles of MBSE without a wholesale change out of existing DoD processes and 

practices.   

One approach to more gradually implement MBSE principles and practices across 

an organization such as the DoD is to implement a data exchange specification which 
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integrates the tools, techniques, and processes currently used by the organization.  Using 

a data exchange specification would allow an organization to continue operating using its 

currently defined processes and simultaneously realize significant benefits from the 

ability to integrate and relate these processes and products across organizational 

boundaries which might have previously been stove-piped and closed off to each other.  

In highlighting interoperability, the OMG SysML Version 1.3 specification introduces one 

such data exchange specification—the ISO 10303 Application Protocol 233, or AP233. 

(Object Management Group 2012, 8) 

B. DATA EXCHANGE SPECIFICATIONS 

Data exchange specifications, when applied as a uniform standard across an 

organization, can bring about significant improvements across an enterprise without 

forcing drastic change on the organization’s current operational rhythm.  Any data 

exchange specification that might emerge as the industry standard, so long as it is 

mandated as a standard across the organization in question, can effectively realize these 

benefits.  In order to remain consistent with the current specification under development 

in conjunction with SysML, this report will focus on one particular data exchange 

standard for description purposes, the ISO 10303 AP233 data exchange specification. 

According to the Object Management Group, AP233 is an industry standard 

metadata model to enable the sharing and exchange of data across multiple tools and 

across multiple acquisition programs. (SysML and AP233 Mapping Activity 2010)  It 

describes the theoretical or potential linkages between different systems engineering (SE) 

tools and products and aims to develop a common schema for storing the language of 

each of these SE tools.  This common schema would then enable the export and import of 

data between compatible SE applications and platforms to better integrate the models and 

products generated by the applications.   

While the AP233 initiative aims to develop an industry-wide metadata standard 

for all systems engineering, design, and product life cycle management (PLCM) tools, 

the concept of communicating data between SE platforms is not new.  Efforts have been 

made to link project management and systems engineering tools, such as integrating data 



 83 

between Microsoft Project and the CORE Systems Engineering tool developed by the 

Vitech Corporation (Bruring 2009).  Enterprise Architect, another well-known SE toolset, 

has a “Model Driven Architecture (MDA)” initiative aimed at similar objectives to those 

of AP233.  MDA describes translating data from Platform Specific Models (PSMs) into a 

Program Independent Model (PIM), which can then be imported to other PSMs to share 

data between platforms (Object Management Group, Sparx Systems 2007). 

AP233 divides the tools it prescribes for integration into two categories: Program 

Management and System Requirements/Design.  It also describes the capabilities often 

used to bridge the gap between these two categories—risk analysis, issue resolution, and 

management authorization and review—and proposes using the AP233 information 

model to facilitate the exchange of information through these capabilities.  Figure 52 

summarizes some of these AP233 tools and highlights the relationships between the 

AP233 data and the core products of SysML (SysML and AP233 Mapping Activity 

2010).  Note the similarity of these categories to the technical management and technical 

systems engineering processes identified by DOD Instruction 5000.02 and summarized in 

Table 5 and repeated (Figure 52). 

Technical Management Processes Technical Processes 
Technical Planning Stakeholder Requirements Definition 
Decision Analysis Requirements Analysis 

Technical Assessment Architecture Design 
Requirements Management Implementation 

Risk Management Integration 
Configuration Management Verification 
Technical Data Management Validation 

Interface Management Transition 

Table 5.   Department of Defense—Systems Engineering Processes (From Defense 
Acquisition University 2013i) 
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Figure 52.  SysML and AP233 Data Overlaps (From “SysML and Ap233 Mapping 

Activity,” OMG SysML Portal Website 2010) 

By facilitating the transfer of data and information between multiple program 

management systems, engineering applications, and platforms, a data exchange 

specification such as AP233 can enable large organizations and their partners to realize 

the inter-model relationship benefits described by model based systems engineering 

(U'Ren 2003). 

C. SMC REQUIREMENTS AND CURRENT TOOLS 

1. Current SMC Tools and Processes 

The great complexity of space systems acquisition requires the use of various 

design and management tools to adequately characterize and track the system as it 

progresses through the acquisition lifecycle.  The Space and Missile Systems Center 

(SMC) uses many such tools to generate models and reports intended to help characterize 
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the system and support decision making.  The value of these tools, however, is limited by 

the fact that they exist at varying levels in the program, from center-wide and program 

specific tools within SMC to the unique tools and processes used by the prime and 

subcontractors for each specific program.   

Currently, SMC program offices struggle to manage various aspects of system 

development in a unified way such as described by MBSE.  Instead, they are left with an 

inconsistent and fragmented set of systems, tools, and products that lack clear structure, 

direction, and governance.  Each individual or program element is left with the challenge 

of identifying which combination of tools, resources, and systems must be used to 

accomplish their jobs.  This current approach lacks guidance as to which resources are 

available and how they might impact the individual’s work, and in many cases, this 

approach does not provide access to these resources as required.  A need exists to provide 

this guidance and access and to integrate the products so they can be distributed and 

effectively utilized throughout the program office. 

Many of the tools used throughout SMC are not integrated with other tools and 

products, which oftentimes results in significant disconnects, re-work, and 

inconsistencies between program elements.  This is particularly an issue with system 

design and architecture tools intended to support concept and system definition, 

interoperability and interface analysis, and verification and validation activities.  Each 

program has many different methods and tools by which individuals (mainly the 

contractors) manage these types of design models, and the SMC product center as a 

whole has very little understanding of what this tool set is.   

Tools used to track and manage many of the program management functions—

such as requirements, organizational structures, schedules, budgets, and project 

management status—seem to be more standardized and integrated within SMC than the 

system design tools.  For example, the Comprehensive Cost and Requirement System 

(CCaR) is used by every SMC program office to capture and track requirements and 

accounting data.  CCaR correlates and traces the system requirements to the project Work 

Breakdown Structure (WBS) and budget obligations/expenditures.  The System Metric 

and Reporting Tool (SMART) is used by every SMC program office to report program 
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status information to key stakeholders on a monthly basis.  The inputs entered into 

SMART and CCaR are later integrated and presented in a new application called 

Executive CCaR which is used by senior DoD acquisition executives to gain insight into 

their program portfolios.  Although these tools are fairly well standardized throughout all 

of the program offices at SMC, the input data must be manually generated for them, as it 

is not made readily available from other tools.   

Much of the requirements, accounting, and program status data captured by tools 

like CCaR and SMART is derived from a wide variety of non-standardized and 

inconsistent applications, tools, and processes.  This data, in many cases, is ultimately 

derived from issue tracking, risk management, and system design and architecture tools.  

It is within these tools that significant inconsistencies exist between, and even within, the 

many space acquisition programs at SMC.  Furthermore, there are a great number of 

unique tools and processes used to track issues and manage risks within each program 

office, resulting in confusion between the various program elements.  This confusion is 

further elevated when the issues and risks being tracked are translated from the tools used 

by the SMC program office to those used by the prime and subcontractors.  The 

architecture and design for any particular system is generally captured and managed by 

the contractor’s tools and processes, which are even less standardized between the prime 

and subcontractors and the various SMC program offices. 

2. SMC Requirements 

In order to fully understand a system’s architecture, make well-informed 

decisions, and report accurate information about a space acquisition program, SMC 

requires insight into how issues and risks are tracked and how requirements and 

associated design issues are traced throughout all levels of the program.  System models 

play a key role in supporting SMC program management, such as those models 

documenting the system’s design and build architectures.  The program office needs to 

ensure that requirements are being addressed properly from the mission capability 

requirements all the way down to the lowest subcontractor level.  Responsibility for these 

requirements must be derived, assigned and tracked in such a way that the system can be 
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integrated to ultimately fulfill its intended mission.  When system issues are discovered 

from tests or other means, SMC needs to ensure that these issues are properly assigned to 

the appropriate program elements.  Management requires knowledge into where and how 

these issues are resolved, along with details on the impact of these issues on the overall 

program.  Each program office requires tools and processes that facilitate configuration 

management of the many documents, models, and products generated and used 

throughout the organization.  To ensure that the system will ultimately meet its 

requirements and fulfill its mission, SMC needs to understand the system architecture and 

how the requirements and issues are traced to the components within the architecture.  To 

assess the quality of the system under development, SMC requires the ability to see into 

both the “as designed” and “as built” architectures. 

In order to adequately support each SMC program office and share insight and 

lessons learned between the program offices, the SMC staff directorates require real-time 

access to the many program management and systems engineering products generated by 

the program offices.  In addition to simply having access to the program office 

information, these staff directorates must also interpret and communicate this information 

to other program offices and to agencies outside of SMC.  In order to better understand 

and communicate this information, these staff directorates require a standardization of the 

information, documentation, and models generated by each of the program offices. 

The current environment makes it very difficult, and oftentimes impossible, for 

SMC to have the level of visibility into the requirements, issues, risks, and architecture 

products required to adequately assess and make decisions in support of the program.  A 

basic structure exists to report the status of a major space acquisition program (e.g., 

CCaR, SMART, Executive CCaR), but the structures and tools used to obtain and track 

the information necessary to input into this reporting structure—and ultimately ensure 

that the system’s mission will be achieved—is inconsistent and lacking. 
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D. POTENTIAL VALUE OF MBSE AND DATA EXCHANGE 
SPECIFICATION TO SMC 

The Space Acquisition infrastructure spans a wide range of communities 

throughout and external to the DoD, including but not limited to acquirers, contractors, 

concept developers, sustainers, politicians, special interest groups, and of course, users.  

Each of these communities and stakeholders has different priorities and expectations of a 

system, and each requires unique insight into the systems’ acquisition lifecycle.  Being 

able to communicate system characteristics between these various stakeholders is critical 

to the success of a program and is an area that the proper application of MBSE principles 

can support by facilitating different viewpoints.  Facilitating different viewpoints, 

however, is extremely difficult if the processes of each stakeholder are not in sync and 

the data behind the products are not fully integrated within a common language set.  Here 

is where a data exchange specification comes into play, enabling the translation and 

integration of the data supporting different viewpoints based on a common model.  By 

endorsing an MBSE strategy with compliance to a data exchange specification such as 

AP233, SMC could take the first step toward enabling greater interoperability among the 

various stakeholders.  As previously discussed, SysML was designed with AP233 

interoperability in mind, and therefore is postulated as the next logical evolutionary step 

for an organization to realize the maximum benefits of MBSE.   

A data exchange specification would facilitate the export and import of data 

between compatible management and engineering applications and platforms used by all 

of the key SMC stakeholders, with migration towards a shared information space that can 

be used to support programmatic decision making throughout the system’s life cycle.   

Early in the acquisition lifecycle before a SMC program office is formally 

established, on-going concurrent efforts by the user and concept development 

organizations are in work to identify capability needs and mission requirements and to 

study potential material solutions to meet capability gaps.  As AFSPC conducts capability 

based assessments (CBAs) to assess the user’s needs, they generate a series of 

descriptions and products (such as the ICD) identifying current capability gaps and 

mission-level requirements and measures.  Simultaneously, the concept development 
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organizations are exploring the realm of the possible in efforts to define methods and/or 

material solutions to fill the capability gaps and meet the requirements.  Currently, the 

various stakeholders participating in these efforts generate these products and capture this 

information using unique models and views—through unique and disjointed processes, 

systems, and tools.  Applying MBSE principles to standardize the models and views used 

to capture this common information could result in a synergistic effect and significantly 

improve the value and quality of the information, models, and products generated.  

Furthermore, introduction of a data exchange specification could provide the framework 

necessary to integrate these products across organizational boundaries, enabling all 

participating stakeholders to better communicate and leverage each other’s information 

and concepts.  This framework could then support more commonality across the various 

stakeholders, such as adoption of SysML.    

Once a capability gap is identified and translated to mission-level requirements, 

and a concept for a material solution is selected, the process of standing up a SMC 

program office and formulating an acquisition program/strategy is initiated.  Although the 

details and composition of the program office are new at this stage in the lifecycle, the 

information basis associated with the requirements and the system concept should be well 

defined and available.  In order to avoid duplication of effort and to maximize efficiency, 

the same standard models and views defined by MBSE principles and used by AFSPC 

and the developmental organizations to capture these requirements and mission concepts 

should be flowed to the emerging SMC program office.  Again, this flow of MBSE 

standardized models, views, and system definitions would be made possible through 

application of a data exchange specification. 

The value-added to a program office (and ultimately the Space Acquisition 

Enterprise) through the use of MBSE principles and data exchange specification concepts 

as described above increases exponentially as the system descriptions, architectures, 

models, and views are further flowed down and connected to other key stakeholders, such 

as the prime and sub-contractors, maintainers, and ultimately back to the operators and 

users.  Furthermore, by expanding MBSE and the utilization of a data exchange 

specification across the Space Acquisition Enterprise and for each SMC program office, 
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other SMC staff organizations such as the Program Management and Integration 

Directorate and the Engineering and Architectures Directorate could provide significantly 

improved cross-program support with the ability to compare products and correlate 

heuristics and lessons learned between programs.  In addition, these staff organizations 

could more effectively communicate and support issues both between program offices 

and to other stakeholders external to SMC such as Congress, AFSPC, and other DoD 

product centers.   

Through the proper application of model based systems engineering principles, in 

conjunction with a data exchange specification, SMC and the Space Acquisition 

Enterprise could realize significant improvements to its current processes.  Models and 

products of specific interest to and generated by each key stakeholder could be developed 

and managed within their unique set of program management and systems engineering 

applications and processes, improving the flexibility for the organization to meet their 

specific needs while also leveraging the data, models, and products generated by other 

key stakeholders.  This integration of products and processes would set SMC (and the 

DoD Space Acquisition community) on a path to alleviate the programmatic issues 

currently plaguing the Space Acquisition Enterprise as a result of the inconsistent and 

fragmented systems, tools, and products. 

E. BARRIERS AND LIMITATIONS 

Taking even this first step will not be easy.  There are many potential barriers and 

limitations—technical and non-technical—to implementing an enterprise-wide model 

based systems engineering and data exchange specification initiative across the Space 

and Missile Systems Center and likewise other DoD product centers.  

Implementation of a data exchange specification is subject to many technical 

challenges.  In particular, any data exchange specification must interface with and 

integrate many legacy systems and tools and is therefore subject to the governing rules, 

restrictions, and shortcomings of each of these systems and tools.  Each application has 

its own unique specifications, routines, data structures, object classes, and protocols that 

it uses to communicate within itself and between other applications.  The introduction of 
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data exchange protocols could be constrained by some of these unique application 

properties, and even has the potential to negatively impact these properties and threaten 

existing application functions.  As it is integrated into these applications, systems, and 

tools, a compliant model must also be implemented within the rules and structure of the 

physical network and server environments of all key stakeholders, including military 

organizations, contractors and external partners.  Firewalls and other network 

configuration settings currently restrict the flow of data between SMC and other 

organizations and corporations such as the prime and subcontractors.  Currently, these 

firewall and network configuration settings even restrict the flow of some information 

between SMC and its Federally Funded Research and Development Center (FFRDC)—

The Aerospace Corporation.  A data exchange specification concept will also be subject 

to a series of Air Force, DoD, and federal instructions, laws, policies, and directives 

guiding and constraining its use.  Table 6 lists some of the most critical of these 

governing directives. 
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AF/DoD/Federal Governing Directives 
DOD Directive 8500.01 Information Assurance 
DOD Directive 8300.02 Data Sharing in a Net-Centric Department of Defense 
DOD Instruction 8520.2 Public Key Infrastructure (PKI) and Public Key (PK) Enabling 
DOD Instruction 8500.2 Information Assurance (IA) Implementation 
Federal Service Oriented Architecture (2008) 
DOD Enterprise Services Designation (2009) 
Air Force Enterprise Information Management CDD (2003) 
Air Force Instruction 33-103: Requirements Development and Processing 
Air Force Instruction 33-332: Privacy Act Information 
DoD O-5200.1-I (Classified Publication): Index of Security Classification Guides (U) 
Federal Information Systems Management Act (2002) 
Federal Records Management Act 
The Clinger-Cohen Act 
Federal Acquisition Regulation (DFAR Sup) 
Executive Order 13011, Federal Information Technology 
OMB Circular A-130 
Federal Enterprise (Information) Architecture Framework (1999) 
Air Force Information and Data Management Strategy Policy (2004) 
AF-CIO Policy Memorandum 04-12 Mandatory Use of Air Force Enterprise 
Information Management Tool Suite (2004) 
OSAF-XC Memo - Enterprise Information  Management Tool Suite (2006) 
AFSPC EIM Strategy (2008) 

Table 6.   Summary of Key Air Force, DoD, and Federal Information Technology 
Governing Directives  

In addition to the potential technical barriers and limitations facing the 

implementation of a data exchange specification, there are several non-technical concerns 

with implementing the model based systems engineering, data exchange, and SysML 

concepts that must be considered.  The concept of working to common models and views 

as described by MBSE could meet cultural resistance within SMC, as it would involve a 

significant change in the way the product center currently does business.  There could 

also be contractual limitations associated with the sharing of information between the 

various program offices and their individual contractors and external partners.  The 

security and/or the proprietary nature of the information being exchanged between 

various applications, and the classification level of the resultant aggregate information 

presented by the application, could also be a concern from the government’s and 

contractor’s perspective.  
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Each organization has its own unique governance, policy, doctrine, and business 

processes which must be adhered to.  Introducing MBSE concepts, along with a data 

exchange specification and/or the SysML language to existing processes and applications 

could have an impact on how the using organization manages the tools, and ultimately 

affect how decision makers within the organization interpret products generated by the 

tools.  By making some of the changes necessary to accommodate the introduction of 

MBSE, other related processes or policies could suffer, and in some cases, these 

necessary changes could be constrained completely by higher level policies.  For 

example, mandating a tool compliant with a specific data exchange specification within 

SMC may not be consistent with existing coordination efforts outside of SMC; an Air 

Force Space Command or DoD policy could require that the same information be 

reported to them in a different format and through a different process.  As a result, the 

ability of SMC to modify its processes and manage the system acquisition through 

common models as described by MBSE (and compliant with a data exchange 

specification and SysML) may be constrained by processes at a higher organizational 

level.  This example serves to highlight the fact that a data exchange specification can 

only effectively enable the application of MBSE practices, and SysML can only fully 

optimize the MBSE practices, if all organizations and key stakeholders involved 

uniformly adopt the standard and adjust their policies accordingly. 
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VI. CONCLUSIONS AND RECOMMENDATIONS 

A. RESPONSE TO RESEARCH QUESTIONS 

The objective of this thesis was to explore the potential benefits of a MBSE 

approach, in this case, using a structured architecture modeling language such as SysML 

to develop and employ mission area architectures to DoD space systems.  While detailed 

answers to the specific research questions this thesis sought to answer (introduced in 

Chapter I) have been discussed and provided throughout the body of this thesis, a 

summary of answers to the research questions is provided here.   

1. What Methods, Techniques, and Processes can be Employed to Aid in 
the Development of Mission Area Architectures for Department of 
Defense (DoD) Space Systems?   

MBSE is a formalized approach to modeling and architecting a system that can be 

used to represent all aspects of a system across the full system lifecycle.  The Department 

of Defense Architecture Framework provides the baseline structure and common data 

meta-model specifications to develop mission area architectures for the DoD, including 

space systems.  Data exchange specifications, such as AP233, can be implemented across 

a DoD organization to standardize the exchange of architecture and system data between 

otherwise stove-piped organizational components, enabling synergistic benefits to data 

analysis across the enterprise. Furthermore, there exist many structured techniques, 

applications, and languages to enable and aid in the development and assessment of 

detailed space system architecture, capturing the detailed interactions and 

interdependencies within and throughout a system and enabling rigorous mathematical 

analysis to support key programmatic decisions and needs, including the Structured 

Analysis and Design Technique and the SysML.    

2. In What Ways or in What Instances Can Model Based Systems 
Engineering (MBSE) be Used in the Development of Space Based 
Mission Area Architectures for the DoD?   

The principles of model based systems engineering provide the framework for 

organizations to select a set of interrelated models to help characterize and analyze a 
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system and document the design, acquisition and sustainment process.  Data exchange 

specifications, such as AP233, can be mandated across the DoD to enable MBSE 

practices and benefits across the enterprise.  However, in order to realize the maximum 

benefits of MBSE, including enhanced communications, reduced development risk, 

improved quality, increased productivity, and enhanced knowledge transfer, a structured 

architecture development technique such as the Structured Analysis and Design 

Technique or SysML must be implemented across the DoD space community and used to 

develop space based mission area architectures.  Specific examples of MBSE principles 

applied to the Overhead Persistent Infrared mission area architecture are provided within 

the case study in Chapter IV of this thesis. 

3. How can the System Modeling Language (SysML), Based on the 
Common Software Engineering Unified Modeling Language (UML), 
be Applied to Aid in Developing Mission Area Architectures for DoD 
Space Systems? 

A detailed example of the application of SysML, in conjunction with MBSE 

principles, is provided for the OPIR mission area, and specifically modeled for the 

SBIRS system.  This executable SysML model, once complete and specified with 

mathematical relationships, can be used to support rigorous engineering analysis.  SysML 

is consistent with the DoDAF specification and supports complete end-to-end realization 

of MBSE practices and benefits throughout the acquisition lifecycle.  Ultimately, the 

overall quality of a system acquisition effort, or project, can be greatly improved through 

the structured application of MBSE architecture, modeling and simulation, and trade 

study activities—all enabled by the development of architecture using SysML.   

B. PROCESS DISCUSSION 

1. Discussion of the Iterative and Recursive Nature of the Synthesis 
Process 

Throughout the process of designing the SBIRS case study architecture presented 

in this paper, many issues were encountered and many design decisions were re-

evaluated. After decomposing the system to the first  level functional architecture, the 

author of this thesis looked back at the external systems diagram and made design 



 97 

modifications to the inputs and outputs between the system, the user, and all external 

information systems.  As the decomposition and I/O of the functional architecture 

evolved through multiple design iterations, so did the physical architecture and its 

allocation to the system functions.  Significant changes were also made to the allocation 

of the physical components to the functional architecture during the definition of the 

interfaces and links within the model. There were even minor design changes being made 

during the definition and allocation of input/output and non-functional requirements to 

the SBIRS design architecture.  As this reiteration played out continuously throughout the 

development of the SBIRS architecture, changes would not simply be limited to the 

design architecture. Other iterative design modifications during and throughout the 

synthesis process might include changes to the SBIRS concept of operations, including 

modifications to the context diagram and use case scenarios to more accurately reflect the 

type of information being exchanged between the key system stakeholders and external 

systems. 

2. Comments on the Use of MagicDraw 

The use of a software tool such as MagicDraw is necessary, in this researcher’s 

opinion, for conceptualizing and architecting a complex system such as SBIRS.  The key 

aspect of the software that makes it so critical in the design and architecture activities is 

its affiliation with a central database of elements and their relationships. Since the design 

of a complex system is very iterative and recursive, changes to the functions, 

components, interfaces, links, inputs, outputs, controls, mechanisms, and many other 

model relationships can be expected throughout the design process. Because of these 

frequent changes, having the properties and relationships of each element centrally stored 

in a database becomes critical to maintaining the integrity of the design, not to mention 

tremendous savings in time and frustration. 

Because of this database centric capability, an architecture and design tool such as 

MagicDraw further shows its value by providing the designer with guidance in modeling 

syntax and allowable relationships while providing the capability to generate a set of 

consistent standardized models and diagrams from information provided to the same 
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central database.  This promotes common modeling syntax standards and patterns to aid 

in communication of a design between multiple parties and disciplines—design 

communication being a principle purpose of developing these models in the first place. 

C. CONCLUSIONS 

MBSE, in conjunction with SySML, can provide extremely powerful benefits to 

the development of architectures and across the acquisition life cycle of DoD space 

systems. 

MBSE can provide additional rigor in the specification and design 
process when implemented using appropriate methods and tools. 
However, this rigor does not come without a price. Clearly, 
transitioning to MBSE underscores the need for up-front investment in 
processes, methods, tools, and training. It is expected that during the 
transition, MBSE will be performed in combination with document-
based approaches. For example, the upgrade of a large, complex 
legacy system still relies heavily on the legacy documentation, and 
only parts of the system may be modeled. Careful tailoring of the 
approach and scoping of the modeling effort is essential to meet the 
needs of a particular project. (Friedenthal, Moore and Steiner 2012a, 
20–21) 

Adopting MBSE and SysML for the design of DoD space systems will require a 

fundamental paradigm shift in how the DoD does business, transitioning from what is 

now a purely document-driven approach.  The implementation of a standard data 

exchange specification can be applied to realize some enterprise benefits and aid in the 

development of requirements for a more integrated and rigorous approach, such as 

SysML.  It is clear that such a paradigm shift is required if the DoD and its space 

acquisition element, SMC, is to meet its requirements and realize the powerful benefits 

promised by MBSE and SysML.   

D. RECOMMENDATIONS  

As discussed, significant value can be added to SMC and the space acquisition 

enterprise in response to its requirements by adopting and pursuing a robust model based 

systems engineering structure supplemented and enabled by endorsing a data exchange 

specification such as the AP233 metadata model standard as a first step to full adoption 

of MBSE and SysML.  Although many potential barriers and limitations exist that may 
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limit or impede the introduction of MBSE practices and the application of a data 

exchange specification, it is recommended that SMC first moves towards the MBSE and 

standard data exchange initiatives to realize both short and long term improvements in its 

processes and decision making ability in support of the acquisition of DoD space 

systems.  As space systems become more and more complex, having robust processes 

and clear system characterizations in place, as described by MBSE, will become 

increasingly necessary to successfully design and acquire a space system.  In order to 

minimize the impact of the implementation barriers described, a phased approach is 

proposed.  

1. Phase 1 

Since many of the issues currently plaguing SMC are related to the inconsistent 

and fragmented set of tools and processes used within and between the various program 

offices, the first incremental phase towards improving the efficiency of SMC’s 

acquisition processes is to identify, list, and manage the configuration of all critical 

program models, processes, and tools used throughout the center.  This short term goal 

will not only help SMC better understand where and how the program management and 

systems engineering functions are executed and tracked by the various program offices, 

but it will also identify where common models, processes, and tools can be adopted and 

standardized in the future.  This will be the first step in identifying the set of models and 

views that will meet the requirements of SMC and shape the eventual MBSE structure. 

2. Phase 2 

Once the current models and processes have been identified, SMC should 

integrate these models, processes, and tools across the many program offices, staff 

directorates, and external partners, including the prime contractors, The Aerospace 

Corporation, and Air Force Space Command, using the principles of MBSE and the 

capabilities of a standard data exchange specification, such as AP233.  Realizing this will 

require several incremental milestones and will involve significant communication and 

coordination between a wide range of different organizations, but if SMC begins to 

advocate for model based systems engineering and endorses a standard data exchange 
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specification now, the significant improvements to SMC and the Space Acquisition 

Enterprise discussed within this paper could eventually become a reality.  Furthermore, 

understanding of the requirements for implementing SysML across the enterprise will be 

much more complete and clear following the implementation of a standard data exchange 

specification.   

3. Phase 3 

While great progress could be made to current processes used in space system 

acquisitions, simply implementing a data exchange specification would not 

fundamentally improve how information is managed at the component level.  Great 

strides can be made to improving the enterprise if the community can make the transition 

from a document-based system, as described earlier and effectively left un-changed with 

the adoption of just a data exchange specification, to a true model based system as 

prescribed by MBSE.  In order to achieve this, a common language must be adopted 

across the DoD space acquisition enterprise that focuses on not just assessing but also 

generating and developing program data and architectures using MBSE tools and 

techniques.   

Given adoption of MBSE practices, and the relaxation of the barriers between the 

many varied stakeholders of SMC and the larger DoD Space Acquisition Enterprise, the 

community should consider further standardizing its implementation of MBSE practices 

by enforcing common processes, standards, models, tools, and techniques across the 

community.  As discussed within this paper, the SysML modeling language is uniquely 

suited to meet this demand.  With the enterprise-wide adoption of MBSE practices and 

the standard SysML language, the DoD Space Acquisition community could truly realize 

all of the powerful benefits described within this paper, and ultimately deliver more 

successful systems through more effective acquisition efforts.   

E. FUTURE WORK 

The SysML architecture model and MBSE practices described herein are 

ultimately only as useful to an organization as the underlying data that they represent is 

complete, clear, stable, and consistent.  Therefore, further study would assess techniques 
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and methods for assessing the quality of the SysML architecture itself and the relative 

maturity of the MBSE products and practices.  The applicability of architecture 

assessment methods, such as those introduced by Kristin Giammarco in “Formal Methods 

for Architecture Model Assessment in Systems Engineering” (2010) and “Architecture 

Model Based Interoperability Assessment” (Giammarco, Architecture Model Based 

Interoperability Assessment 2012) to the MBSE and SysML architecture techniques 

described in this report could be further studied.  The system architecture heuristics 

provided in the Appendix could then be quantified and applied precisely to assess the 

quality of the architecture and models developed using SysML and MBSE. 
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APPENDIX. THE ART OF SYSTEM ARCHITECTURE—
HEURISTICS 

As “the format of heuristics is words expressed in the natural languages” (Maier 

and Rechtin 2009, 31) the 10 heuristics provided in this appendix are written in the first 

person and refer to real-life examples and experiences of the author of this report.  As 

such, the writing style used differs drastically from that of the body of this report, as is 

suitable for use when discussing heuristics  

1. Focus on User Interactions and Interfaces 

A system is not likely to be accepted by a user if the user’s interaction with the 

system is not intuitive and what they would expect from a similar system.  When 

architecting, pay particular attention to how the user will interact and interface with the 

system.  Imagine how the system would “feel” in the hands of a user, put yourself in the 

user’s shoes, and ask yourself how you would expect to interact with the system.   

a. Discussion  

I am a longtime fan of Nintendo and have owned nearly every gaming 

system they have produced over the years.  Of these systems, I have always been 

particularly interested in their portable gaming platforms and have owned everything 

from a classic Game Boy to a Nintendo DS. I recently purchased the Nintendo DSi XL.  

Immediately after removing the product from the box, I was struck by this architecture 

principle.   

All DS systems have two display screens that open about a central hinge 

holding the two together.  When I opened my new Nintendo DSi XL, I immediately 

noticed that the hinge holding the two screens together was loose, causing the system to 

wobble during play.  While all previous versions of the DS system (DS, DS Lite, and the 

DSi) had the same basic screen design, the DSi XL is the first to exhibit this wobble at 

the hinge.  As alluded by the “XL” in its name, the primary difference between the DSi 

XL and its predecessor, the DSi, is the increased size of the gaming system and size of 

the display screens (an increase of 93 percent).  However, while they increased the size of 
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the display screens by 93 percent, Nintendo did not redesign the hinge to account for the 

additional weight of the top screen caused by its larger size.   

Had the system architect focused more on the components with which the 

user was interacting directly, he or she may have noted the connection between the screen 

size and the hinge design.  While all other aspects of the new system were clearly an 

improvement from its predecessor, the DSi, the wobble of the screen became quickly 

apparent and was not what I expected to “feel” when using the system.  My acceptance of 

the system was therefore threatened by the uncharacteristic and unexpected behavior of a 

critical system component that I came in direct contact with each time I used the system.     

I observe this very same principle daily as I surf the Web.  After accessing 

common web services, such as those used for banking, searching, shopping, as well as 

online encyclopedias, I come to expect a particular “look and feel” when accessing other 

similar Web services.  If the user interface’s design of these services is radically different 

than others, I have a tendency to quickly reject that system or service as a result.   

2. Maximize Cohesion 

Assign specific responsibilities and scope to the system elements, and stick to 

them!  Individual aspects of a system architecture must be clearly focused to ensure that 

they are understandable, manageable, and supportive of an open and robust system 

design.  Highly cohesive architecture elements are understandable and manageable 

because they comprise similar functions, activities, or operations and “bucket” them 

logically.  They support an open and robust system design because they can be 

complemented by other cohesive elements to meet future requirements by reducing the 

number of interfaces and supporting low coupling within the system. When developing 

system architecture, clearly define the purpose and scope of each element of the 

architecture.  When data items, functions, activities, or other elements need to be added to 

the system, assign those elements to a component that is closely related to that element or 

that serves a similar purpose.  If the new element does not easily fit within a currently 

defined “bucket,” consider creating a new “bucket” or component to host that element.  

Avoid the tendency to group activities, functions, data items, or other elements that are 
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not closely related as this has the potential to increase the coupling and therefore the 

complexity of the system.  This increased complexity will likely result in increased cost, 

schedule, and performance risk.  If a new capability is desired and does not fit the initial 

scope, do not attempt to significantly modify or expand an existing element once the 

system has been implemented based on highly cohesive elements (Larman 2005, 314–

317). This also related to the heuristic: “Group elements that are strongly related to each 

other, separate elements that are unrelated” (Maier and Rechtin 2009, 402). 

a. Discussion  

About a year ago, when I first arrived at my current organization, I noticed 

a shortfall in the way my organization was managing and promoting training and 

education opportunities to members of the organization.  As a result, I talked to the 

training managers to derive requirements for a system that could help fill this gap.  After 

talking to the training managers and several other stakeholders, including other members 

of the organization and the organization’s leadership, I determined that I would construct 

a capability on the organization’s intranet site for the training managers to post 

information about upcoming training and education opportunities and advertise these to 

the organization.  The initial scope of this application was as an information and 

advertising capability only.   

Eventually, this capability was adapted by the organization and was such a 

success that recently an additional requirement to add a registration capability to the 

training list was proposed.  The initial development effort to accommodate this new 

requirement encountered significant challenges since registering for a course proved to be 

quite different in functionality than simply listing and advertising the courses.  It was 

quickly realized that trying to modify and add onto the existing training list capability 

would not be possible without negatively impacting aspects of the list that met its original 

requirements and scope.  Trying to incorporate both of these functions in a single element 

did not support high cohesion.  As a result, the design was not manageable or open/robust 

to future design.    
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3. Minimize Coupling 

Minimize the dependency of one system component on other system components.  

The more dependencies that exist between one system, activity, function, or data object 

and another, the more complex the system becomes and the more likely it is to fail.  If 

one element relies heavily on another element and the configuration of that element 

changes, there will likely be an impact to the dependent element.  This dependency 

makes the system not-conducive to change.  Conversely, a system having elements with 

low coupling  supports an open and robust system design by means of reducing the 

number of interfaces and therefore the complexity of the system.  When architecting a 

system, be sure to adhere also to Principle 2: High Cohesion. Highly cohesive elements 

should, by definition, enforce low coupling between elements.  Define activities, 

functions, data items, systems, and other elements such that they depend on other 

elements as little as possible.  If changes are required of the system to satisfy a future 

requirement, follow this same principle to ensure that changes to one element have a 

minimal impact on other system elements.  Pay particular attention to any dependencies 

between elements as system modifications are made and ensure that these dependencies 

are not adversely affected by the changes (Larman 2005, 299–302). This also relates to 

the heuristic: “Choose a configuration with minimal communications between the 

subsystems” (Maier and Rechtin 2009, 402). 

a. Discussion  

Returning to my compulsive tendency to dissect and criticize systems and 

analyze their designs, I recently purchased a digital wrist watch to time my 1.5 mile run 

in preparation for my Air Force physical fitness test.  I couldn’t help but notice a 

violation of this principle in the software design of the watch.  The stopwatch function of 

the watch has a split display—one half showing the actual timer used while running and 

the other displaying the function in question.  Before starting the timer in the stopwatch 

function, the top display shows the current time.  This is useful for connecting back to the 

real world if, for instance, a meeting is approaching and I need to ensure that I stop 

exercising by a certain time in order to make the meeting.  The stopwatch also uses the 
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top display for another function – the ability to set an alarm when a specified time is 

reached by the timer.  This is useful for providing feedback on meeting my run time 

goals.   

Although both functions of the top display are useful, they are coupled in 

such a way that they become practically useless.  This is because the first function—

displaying the current time—only shows prior to starting the timer while the second 

function—displaying the alarm time—only shows while the timer is running.  This is 

exactly opposite of what would be expected since the user is concerned with the real 

world time while running and sets the alarm time prior to starting the run.  The way these 

two functions are coupled with the stopwatch timer function results in greater system 

complexity and, in this case, makes two otherwise very useful functions practically 

useless.   

4. Don’t Forget Implementation Planning 

You can design the best system possible, but if it is not implemented properly, it 

could still fail.  Even a “perfect” system can fail if not implemented at the proper time, in 

the proper environment, or with the proper configuration and support behind it.  Early 

planning for how a system is to be deployed will shape the entire design effort by 

defining how to phase the system, set the schedule, and “sell” the system to its key 

stakeholders.   

The moment a system or product is conceived and a concept developed, well 

before a comprehensive architecture effort, planning the implementation of the system 

must begin.  This planning includes determining when to deploy certain aspects of the 

system, within which environment to deploy them, how maintenance and upgrades to the 

system will be conducted, and other business concerns related to the system’s design and 

implementation.  This implementation planning must be conducted throughout the 

lifecycle of the system—”from cradle to grave”—and should be updated and evolved 

iteratively and recursively with time.  This principle is related to the heuristics: “Good 

products are not enough.  Implementations matter” (Morris 1993) and “If social 
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cooperation is required, the way in which a system is implemented and introduced must 

be an integral part of its architecture” (Maier and Rechtin 2009, 398). 

a. Discussion  

I have observed numerous products and systems developed and 

implemented at Los Angeles Air Force Base that have failed to achieve their full potential 

due to inadequate implementation planning.  Some great systems are designed and 

developed for use across the LAAFB community only to find that they are not accessible 

by a group of critical stakeholders who support the project from another organization 

external to the LAAFB network.  This is an example of not implementing the system in 

the proper environment or not planning for the environment properly.   

Another common failure mode of otherwise successful systems is not 

implementing them at the right time.  There are many systems that get locked in 

development due to requirements creep and other issues such that when they are finally 

deployed, the environment and user requirements have changed enough to significantly 

degrade the usefulness of the system or even make it completely obsolete.  Early 

implementation planning for how to phase the deployment of the system could have 

combated this failure mode by clearly defining an implementation schedule.   

Other issues occur when a system is not “sold” or marketed appropriately 

to its users.  Many of the information systems to which I am referring critically rely on a 

large community using the system to ensure the information is fresh and complete.  If the 

system is not integrated into current business and technical processes, or critical users are 

simply not made aware of the system’s existence, the product is likely to fail as a result.   

5. Cannot Optimize for all Stakeholders 

You cannot make everyone happy.  A complex system cannot equally satisfy and 

completely meet the needs of all stakeholders.  As more requirements are gathered from 

more and more stakeholders, competing requirements arise for which fully meeting one 

requirement could result in not meeting another.   
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Focus on meeting the needs of the key stakeholders first since their acceptance of 

the system will be critical to success.  A “balancing act” must be played to reach a 

common ground with stakeholder requirements and expectations when these 

requirements compete with one another.  Always be honest with the stakeholders as 

promises are made to meet specific requirements, particularly when making trade-offs to 

meet or optimize some requirements at the expense of others.  This principle is related to 

the heuristic: “No complex system can be optimum to all parties concerned, nor all 

functions optimized” (Maier and Rechtin 2009, 399). 

a. Discussion  

For complex systems, it is natural for there to be many different 

stakeholders having very different viewpoints and expectations from the proposed 

system.  I often ask myself, “Why did they design the system this way?” or “Why didn’t 

they put this function in the system?” as well as find myself saying, “This function is 

useless to me!”  Before, I would be relentlessly critical of the systems for which I would 

make these comments—quickly rejecting the system as a “piece of junk.”  Now that I am 

becoming a trained architect and can take a step back to see the system from a higher 

level, I am more careful not to jump to the conclusion that the system is a “piece of junk” 

but to first consider the possibility that I am simply not among the stakeholder group on 

which the system was primarily focused.   

Accepting the fact that a system has features that are useless to me or that 

it does not have features that I believe it should have is difficult to do; however, I can 

now appreciate the fact that the selection of these features was likely directed towards a 

specific audience and perhaps is not the correct system for me.  An example of this idea 

is the iPod.  Apple designs its products, such as the iPod, to have the simplest user 

interface possible, often at the expense of including useful features up front.  When 

listening to music, I prefer a variety and therefore find myself using the “shuffle” feature 

frequently.  Since this is one of the most useful features to me, it would be ideal if I could 

easily toggle the shuffle option with one motion such as by flipping a switch on the 

device itself.  While some systems have this option, the iPod does not since having this 
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button on the device would detract from a more critical requirement for the product—a 

simple and clean aesthetic appearance.  Of course it would be foolish to reject the iPod as 

a failed system because of this feature, since history shows that Apple has been extremely 

successful with the iPod system.   

6. Diverse Perspectives 

Embrace different opinions.  It takes a diverse team of individuals to develop the 

best systems.  Throughout the design and development of a product, system, or service, 

members of a team will have different perspectives and opinions that influence the design 

of the system.  Only when these diverse perspectives are managed properly can the 

greatest potential system be realized.   

When working with a team of individuals on designing, architecting, and fielding 

a system, it is crucial that a leader be present to encourage the free exchange of diverse 

ideas and options related to every aspect of the system.  Lead a system design by opening 

the table to this diversity.  Ask targeted questions often to facilitate the exchange of these 

different perspectives.  Adhere to this principle throughout the design of the system and 

success will be within reach.  Ignore it, and failure is likely.  This principle relates to the 

heuristic: “If you think your design is perfect, it’s only because you haven’t shown it to 

someone else” (Harry Hillaker 1993, quoted in Maier and Rechtin 2009, 405). 

a. Discussion  

Throughout my career and professional development, and more recently 

while working on group projects for my ’master’s degree program, I have learned that 

there are always multiple ways to look at and interpret a problem.  As a team progresses 

though the natural team building model (forming, storming, norming, and performing), I 

become more and more open to the different opinions and perspectives of my teammates.  

Being more open and embracing these different perspectives has resulted in us more 

accurately defining the problem, collecting a pool of potential solutions, and evaluating 

each potential solution, and it has ultimately resulted in a better product than could have 

been obtained from an individual effort.   
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Working with and accommodating for these diverse perspectives is rarely 

easy and must be approached delicately to maintain an effective working relationship 

between individuals.  In early discussions, it is ideal to brainstorm as many different ideas 

as possible; however, eventually a consensus must be reached and a decision must be 

made that, by definition, will not fully satisfy the opinions of all parties.  These decision 

trade-offs are made throughout a system’s design and are possibly the most critical 

leadership challenge for managing a program.  If managed properly, adhering to this 

principle can bring about huge dividends for the system in the long run.  If not managed 

properly or if this principle is not adopted, it is unlikely that the optimal system will be 

achieved.   

7. Maximize Alternatives 

Once you make a decision and continue the design effort based on that decision, 

you are likely stuck with it for the life of the system.  The more alternatives and options 

you can come up with, the more likely you are to come up with the best one.  

While designing and architecting a system, come up with as many alternative 

solutions to every problem as possible and as time permits, and hold on to those 

alternatives until a decision absolutely must be made to move forward.  This principle is 

related to the heuristic: “Build in and maintain options as long as possible in the design 

and build of complex systems.  You will need them.  OR… Hang on to the agony of 

decision as long as possible” (Robert Spinrad 1988, quoted in Maier and Rechtin 2009, 

40). 

a. Discussion  

I tend to be a naturally indecisive person, a characteristic that I’ve 

identified to be both strength and weakness in myself.  Indecisiveness can be a weakness 

in a leader if decisions are never made resulting in a lack of guidance and direction, but 

indecisiveness can also be a strength when it encourages developing a complete 

understanding of a problem and trying to arrive at the best possible solution to that 

problem.  An effective leader must balance this with cost, schedule, and other 
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programmatic issues to arrive at as many different alternative solutions as possible and 

hold onto those alternatives as long as practical.   

Holding onto these alternatives and delaying a decision as long as 

practical (cost and schedule considered) can bring benefits to that decision, since the 

more defined the system architecture becomes, the more the architect will be able to 

understand and comprehend the significance and impact of that decision.  The bottom 

line is: the longer you wait to make the decision, the better you understand the problem 

and impact of the decision; therefore, it follows that a better decision can be made since it 

is based on better understanding and more information.  

Once that decision is made and subsequent decisions are made based on it, 

it becomes more and more difficult to reverse or change that decision without resulting in 

significant rework and redesign.  Since schedule will always play an important role in a 

successful system, there is rarely the time or money to go back and change a decision and 

accomplish this rework; therefore, every decision made in the design and architecture of a 

system causes exponential residual effects to ripple throughout the system design. It is 

therefore critical to get those decisions right the first time.  Coming up with as many 

alternatives as possible and delaying the selection from among the alternatives as long as 

possible increases the chances of making the best possible decisions and therefore the 

best possible system.   

8. Use Prototypes to Refine Requirements 

Users do not know what they need until they can put their hands on it.  A user’s 

stated requirements might be what they want at the time, but what they really “need” is 

another matter.  Only once users can touch and feel a system and criticize its design do 

they truly start defining their needs.    

As a means of further understanding requirements and refining user needs and 

expectations, develop early prototypes of the system or elements of the system.  Involve 

the users and other key stakeholders in testing and operating these prototypes and keep an 

open ear to their comments, concerns, frustrations, and desires.  Accurate requirements 

can be extracted whether the prototypes meet or do not meet the user’s needs and 



 113 

expectations.  Involve the users in this way throughout the development of the system to 

maximize the chances of success.  This principle is related to the heuristics: “The phrase, 

“I hate it,” is direction” (Lori I. Gradous 1993, quoted in Maier and Rechtin 2009, 270) 

and “The most important single element of success is to listen closely to what the 

customer perceives as his requirements and to have the will and ability to be responsive” 

(J. E. Steiner 1978, quoted in Maier and Rechtin 2009, 270). 

a. Discussion  

As I have developed web services and applications for users at Los 

Angeles Air Force Base, I have found that using rapid prototyping is by far the best and 

most efficient way to extract user requirements.  The users rarely know what they are 

looking for until they have a basic user interface or picture to look at and poke holes in.  

They very quickly begin making comments like “you forgot to add this,” “this belongs 

here, not here,” and “I don’t like the look of that.”  Whether they know it or not, these 

comments are very powerful requirements influencing the design of the eventual system.  

I listen carefully and take notes during these interactions and then return to the drawing 

board to incorporate changes to the prototype based on these comments.  I then return to 

the user with the updated prototype and repeat the process to further refine the user’s 

requirements and expectations of the system.  Once the criticisms thin and the user begins 

to like the system more and more, the first (or next iterative) version of the system can be 

fully developed and deployed.   

In addition to helping the user define their requirements and the developer 

meet the true needs of the user, using rapid prototyping in this way also helps to scope the 

user’s expectations of the system to be delivered.  He or she will have a better mental 

picture of what the system will look like and how it will function since he or she was 

closely involved with its design.  The user will also be more likely to accept the system as 

he or she develops a sense of ownership for it.  Since the user was involved throughout 

the requirements refinement and design process, he or she is more likely to say, “I 

designed this system” and “This is my system.”  This distinction is very important for 
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system acceptance and implementation since without that sense of ownership, the system 

is likely to fail.   

9. Iterative and Recursive 

Although a decision made early in the architecture process may seem trivial, the 

impacts of that decision, made clear further down the road, could change your 

perspective completely.  In order to fully understand and adequately capture a system, the 

architecture must be developed iteratively and recursively. 

When architecting a system, it is important to keep an open mind and remain 

flexible to evolution and change as the architect’s vision of the system becomes more and 

more clear.  At each level of architecture, and while the system is further and further 

decomposed, the architect must take a step back to re-evaluate and improve the design at 

higher levels based on the enhanced understanding of the system gathered from diving 

down into the lower levels.   

a. Discussion  

Throughout the process of designing the SBIRS architecture, many issues 

were encountered and many design decisions were re-evaluated.  After decomposing the 

SBIRS system to the first level, I looked back at the external systems diagram and made 

design modifications to the inputs and outputs between the SBIRS system, the user, and 

all external information systems.  As the decomposition and I/O of the functional 

architecture evolved through multiple design iterations, so did the physical architecture 

and its allocation to the system functions.  As this reiteration played out continuously 

throughout the development of the SBIRS architecture, changes were not limited to only 

the design architecture.  Other iterative design modifications made during the synthesis 

process included changes to the SBIRS concept of operations, including modifications to 

the use case scenarios to more accurately reflect the type of information being exchanged 

between the key system stakeholders and external systems.  
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10. Modular Design 

Carefully applied component commonality equals significant lifecycle cost 

savings.  Long-term cost savings and performance benefits can be realized by a system 

and its related systems through the use of an open, modular design.   

When architecting a system, choose components such that they support the 

principles of high cohesion (Principle 2), low coupling (Principle 3), and maximize 

commonality so they can be re-used or repurposed within the system being designed as 

well as in other related systems.  This principle is related to the heuristics: “Use open 

architectures.  You will need them once the market starts to respond.” and “Relationships 

among the elements are what give systems their added value” (Maier and Rechtin 2009, 

399). 

a. Discussion  

Great benefits can be realized by families of systems having components 

with high commonality.  These common components support an open, modular design 

and can be more easily replaced, updated, and re-used.  This commonality has the 

potential to result in significant cost savings for maintaining the system and can greatly 

reduce the logistics footprint of it and other related systems, resulting in additional cost 

savings and increased supportability. 

An example of this principle is a family of power tools from the same 

company.  I have a power tool kit that includes a drill, circular saw, sander, radial arm 

saw, and flashlight all from the same company and manufacturer.  Although this kit 

contains five distinctly different systems they all have one thing in common—the 

rechargeable battery power supply.  I can easily remove the power supply from a power 

tool and plug it into a recharger (another common system) or transfer it to another power 

tool.  Having this common power supply reduced the cost of the power tool kit since I 

only had to purchase two power supplies (really only one was necessary, but a back-up is 

always nice to have) for the five power tools rather than one for each.  The cost of the 

system was likely further reduced by minimizing the complexity of designing, 

manufacturing, packaging, handling, and shipping the power tool kit.   
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Further benefits can be seen in the maintenance and logistics of the 

modular family of power tools.  If one of the power supplies fails and needs to be 

replaced, I can simply purchase another power supply.  I can avoid untimely and 

expensive repairs on a specific power tool since the power supply has been de-coupled 

from the architecture of the tool itself.  Also, if I require a power supply with a greater 

battery life, I can purchase an upgraded power supply, again without changing or 

impacting the tool itself.  The maintenance of each system is therefore greatly simplified 

as a result of its modular design, resulting in even more cost savings.  The logistics 

footprint of storing and transporting the set of power tools is reduced, since I only have to 

store and haul two power supplies instead of five or more.    
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